Аннотация

Самоорганизующиеся карты, вместе с их разновидностями, представляют собой одну из наиболее популярных нейросетевых архитектур, ориентированных на обучение без учителя. Они широко используются в таких областях, как статистика, обработка сигналов, теория управления, финансовый анализ, экспериментальная физика, химия, медицина, для решения сложных, многомерных, нелинейных задач, связанных с извлечением признаков, обработкой и классификацией изображений, адаптивным управлением и т. п. В книге дается детальное изложение математического аппарата и применений для самоорганизующихся карт. Для специалистов в области теории и применений нейросетевого моделирования, а также студентов и аспирантов соответствующих специальностей.

Аннотация

Обучение с подкреплением является одной из наиболее активно развивающихся областей, связанных с созданием искусственных интеллектуальных систем. Оно основано на том, что агент пытается максимизировать получаемый выигрыш, действуя в сложной среде с высоким уровнем неопределенности. Дается исчерпывающее и ясное изложение идей, методов и алгоритмов обучения с подкреплением, при этом диапазон излагаемого материала_от истоков возникновения рассматриваемых концепций до современных результатов в данной области. Для специалистов в области искусственного интеллекта, нейросетевого моделирования и управления, а также студентов и аспирантов соответствующих специальностей.

Аннотация

Дается развернутое введение в проблемы нечеткого и нейронечеткого моделирования применительно к задаче управления системами. Материал основан на новейших результатах в данной области и иллюстрируется многочисленными примерами. Для специалистов в области нечеткого и нейронечеткого моделирования и управления, а также студентов и аспирантов соответствующих специальностей.

Аннотация

Книга, посвященная моделированию нервных систем, дает возможные ответы на следующие вопросы: как должна быть устроена нервная система с логически-рациональной точки зрения? можно ли воспроизвести путь «конструкторской мысли», который прошла Природа, конструируя нервные системы? что такое нейрон и как он работает? Рассмотрены способы построения адаптивных систем управления на основе эмпирических знаний, или систем динамической оптимизации. Представлены прототипы некоторых прикладных систем, построенных с использованием предложенного метода. Для научных работников, аспирантов и студентов, интересующихся кибернетикой; для специалистов по системам управления, биологов и математиков.