Скачать книгу

(x2)кр (рис. 1.2). Из этой модели следует, что потери x1 < (x1)кр возможны тогда, когда количество воробьев x2 меньше критической величины, т. е. x2 < (x2)кр. При этом предпочтительна ситуация, в которой x2 = 0, и тогда потери x1 = 0. Однако такой подход не оправдал себя – средства достижения цели оказались ложными, так как после уничтожения воробьев (x2 = 0) потери не уменьшились, а, наоборот, возросли по причине размножения гусениц, уничтожающих пшеницу.

      Рис. 1.2

      В итоге мы имеем две задачи:

      – как обосновать величину (x2)кр (очевидно не нулевую);

      – какова модель x1 = x1(x2,x3,…), позволяющая рассчитывать (x1)ф(t) и прогнозировать этот процесс во времени.

      Ограничимся для иллюстрации подхода упрощенной моделью. Пусть потери зерна составляют x1 = f(x2,x3), где x3 – неконтролируемый возмущающий процесс. Как показал опыт Китая, уничтожение воробьев привело к размножению гусениц в количестве x3 = φ2(x2), которые уничтожали урожай. Однако гусеницы проявились в момент времени t + τ, где t — текущий момент времени.

      В результате в упрощенном варианте модели запишем x1(t) = φ1(x2(t)) + φ2(x3(t + τ)), где функции φ1 и φ2 приведены на рис. 1.3. Это означает, что уменьшение потерь x1 при уничтожении воробьев x2 приводит к увеличению потерь x1 за счет увеличения количества гусениц x3, которых раньше уничтожали воробьи. Однако этот факт становится осязаемым в момент времени t + т, т. е. при t1 > t + τ, когда x1 достигает (x1)кр и требует либо восстановления x2, либо вложения ресурсов на уничтожение x3, т. е. к дополнительным затратам, эквивалентным снижению урожая.

      Рис. 1.3

      Таким образом, человек строит модель потерь x1 в виде xo1 = φ1(x2). При этом фактические потери урожая составляют (x1)ф = φ1(x2) + δx1, где δx1 = φ2(x3(t + τ)) – неконтролируемая со стороны человека функция времени, задающая дополнительные потери урожая x1; x2(t), x3(t) – случайные величины, в общем случае, случайные процессы.

      Анализируя xo1, человек делает вывод:

      A1 : (xo1x1кр) или A2 : (xo1x1кр).

      На самом деле возможно (в зависимости от δx1):

      Β1 : (x1фx1кр), Β2 : (x1фx1кр).

      В итоге возможны следующие ситуации:

      C1 = {xo1x1кр; x1фx1кр};

      C2 = {xo1x1кр; x1ф x1кр};

      C3 = {xo1x1кр; x1фx1кр};

      C4 = {xo1x1κρ; x1ф ≤ x1кр}.

      В силу случайности х1 хo1 событиям Сi

можно поставить в соответствие вероятности Рi = P(Сi)
. При этом событию С4, оцениваемому вероятностью Р4 = Р(С4), соответствует ситуация безопасного состояния, когда цель снижения потерь достигнута. Вероятность Р3

Скачать книгу