ТОП просматриваемых книг сайта:
Евклидово окно. История геометрии от параллельных прямых до гиперпространства. Леонард Млодинов
Читать онлайн.Название Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Год выпуска 2001
isbn 978-5-904584-60-3
Автор произведения Леонард Млодинов
Жанр Математика
Пифагор считал, что владение вещами мешает достижению божественных истин. Греки в те времена носили шерсть, а вещи склонны были красить в разные цвета. Состоятельный человек мог время от времени набросить мантию, на манер плаща, на плечи, застегнув ее золотой булавкой или брошью – с гордостью демонстрируя свое богатство. Пифагор отказывался от роскоши и запрещал своим последователям носить какую бы то ни было одежду, кроме простого белого льна. Денег они не зарабатывали – полагались на благотворительность кротонцев и, возможно, на средства некоторых учеников, поскольку вся собственность была собрана воедино, и все жили общинно. Устройство самой этой организации установить затруднительно, поскольку привычками и нравами люди того времени совсем не походили на нас. Например, пифагорейская братия отличала себя от обычных людей тем, что не мочилась на публике и не занималась сексом на виду у всех[40].
Скрытность играла важную роль в пифагорейском сообществе – вероятно, благодаря опыту Пифагора в тайных практиках египетского жречества. А может, из нежелания навлекать неприятности, которые могли возникнуть, узнай общественность о революционных идеях пифагорейцев. Одно из открытий Пифагора обросло такой таинственностью, что, согласно легенде, разглашение его было запрещено под страхом смерти.
Вспомним задачу определения длины диагонали в квадрате со стороной в единицу. Вавилоняне рассчитали это значение с точностью до шести десятичных знаков, но пифагорейцам этого показалось мало. Они пожелали знать точное значение. Как можно делать вид, что знаешь хоть что-нибудь о пространстве внутри квадрата, если не знаешь даже такого? Трудность, однако, состояла в том, что это значение пифагорейцы получали все с большей точностью, но ни одно полученное число не было исчерпывающим ответом. Но пифагорейцев так просто не смутишь. Им хватило фантазии задаться вопросом: а существует ли вообще такое число? Они заключили, что нет, – и им хватило одаренности доказать это.
Сейчас-то мы знаем, что длина этой диагонали равна квадратному корню из двух – иррациональному числу. Это означает, что его нельзя записать в десятичном виде с конечным количеством знаков после запятой и также его нельзя записать в виде
38
Gorman, стр. 111.
39
Gorman, стр. 111.
40
Gorman, стр. 123.