Скачать книгу

type="note">41.

      The difficulty or the impossibility of rendering the transmission of acquired characters intelligible by an appeal to any known force has been often felt, but no one has hitherto attempted to cast doubts upon the very existence of such a form of heredity.

      There are two reasons for this: first, observations have been recorded which appear to prove the existence of such transmission; and secondly, it has seemed impossible to do without the supposition of the transmission of acquired characters, because it has always played such an important part in the explanation of the transformation of species.

      It is perfectly right to defer an explanation, and to hesitate before we declare a supposed phenomenon to be impossible, because we are unable to refer it to any of the known forces. No one can believe that we are acquainted with all the forces of nature. But, on the other hand, we must use the greatest caution in dealing with unknown forces; and clear and indubitable facts must be brought forward to prove that the supposed phenomena have a real existence, and that their acceptance is unavoidable.

      It has never been proved that acquired characters are transmitted, and it has never been demonstrated that, without the aid of such transmission, the evolution of the organic world becomes unintelligible.

      The inheritance of acquired characters has never been proved, either by means of direct observation or by experiment42. It must be admitted that there are in existence numerous descriptions of cases which tend to prove that such mutilations as the loss of fingers, the scars of wounds, etc., are inherited by the offspring, but in these descriptions the previous history is invariably obscure, and hence the evidence loses all scientific value.

      As a typical example of the scientific value of such cases I may mention the frequently quoted instance of the cow, which lost its left horn from suppuration, induced by some ‘unknown cause,’ and which afterwards produced two calves with a rudimentary left horn in each case. But as Hensen43 has rightly remarked, the loss of the cow’s horn may have arisen from a congenital malformation, which would certainly be transmitted, but which was not an acquired character.

      The only cases worthy of scientific discussion are the well-known experiments upon guinea-pigs, conducted by the French physiologist Brown-Séquard. But the explanation of his results is, in my opinion, open to discussion. In these cases we have to do with the apparent transmission of artificially produced malformations. The division of important nerves, or of the spinal cord, or the removal of parts of the brain, produced certain symptoms which reappeared in the descendants of the mutilated animals. Epilepsy was produced by dividing the great sciatic nerve; the ear became deformed when the sympathetic nerve was severed in the throat; and prolapsus of the eye-ball followed the removal of a certain part of the brain—the corpora restiformia. All these effects were said to be transmitted to the descendants as far as the fifth or sixth generation.

      But we must inquire whether these cases are really due to heredity and not to simple infection. In the case of epilepsy, at any rate, it is easy to imagine that the passage of some specific organism through the reproductive cells may take place, as in the case of syphilis. We are, however, entirely ignorant of the nature of the former disease. This suggested explanation may not perhaps apply to the other cases: but we must remember that animals which have been subjected to such severe operations upon the nervous system have sustained a great shock, and if they are capable of breeding, it is only probable that they will produce weak descendants, and such as are easily affected by disease. Such a result does not however explain why the offspring should suffer from the same disease as that which was artificially induced in the parents. But this does not appear to have been by any means invariably the case. Brown-Séquard himself says, ‘The changes in the eye of the offspring were of a very variable nature, and were only occasionally exactly similar to those observed in the parents.’

      There is no doubt, however, that these experiments demand careful consideration, but before they can claim scientific recognition, they must be subjected to rigid criticism as to the precautions taken, the number and nature of the control experiments, etc.

      Up to the present time such necessary conditions have not been sufficiently observed. The recent experiments themselves are only described in short preliminary notices, which, as regards their accuracy, the possibility of mistake, the precautions taken, and the exact succession of individuals affected, afford no data upon which a scientific opinion can be founded. Until the publication of a complete series of experiments, we must say with Du Bois Reymond44, ‘The hereditary transmission of acquired characters remains an unintelligible hypothesis, which is only deduced from the facts which it attempts to explain.’

      We therefore naturally ask whether the hypothesis is really necessary for the explanation of known facts.

      At the first sight it certainly seems to be necessary, and it appears rash to attempt to dispense with its aid. Many phenomena only appear to be intelligible if we assume the hereditary transmission of such acquired characters as the changes which we ascribe to the use or disuse of particular organs, or to the direct influence of climate. Furthermore, how can we explain instinct as hereditary habit unless it has gradually arisen by the accumulation, through heredity, of habits which were practised in succeeding generations?

      I will now attempt to prove that even these cases, so far as they depend upon clear and indubitable facts, do not force us to accept the supposition of the transmission of acquired characters.

      It seems difficult and well nigh impossible to deny the transmission of acquired characters when we remember the influence which use and disuse have exercised upon certain special organs. It is well known that Lamarck attempted to explain the structure of the organism as almost entirely due to this principle alone. According to his theory the long neck of the giraffe arose by constant stretching after the leaves of trees, and the web between the toes of a water-bird’s foot by the extension of the toes, in an attempt to oppose as large a surface of water as possible in swimming. There can be no doubt that those muscles which are frequently used increase in size and strength, and that glands which often enter into activity become larger and not smaller, and that their functional powers increase. Indeed, the whole effect which exercise produces upon the single parts of the body is dependent upon the fact that frequently used organs increase in strength. This conclusion also refers to the nervous system, for a pianist who performs with lightning rapidity certain pre-arranged, highly complex, and combined movements of the muscles of his hands and fingers has, as Du Bois Reymond pointed out, not only exercised the muscles, but also those ganglionic centres of the brain which determine the combination of muscular movement. Other functions of the brain, such as memory, can be similarly increased and strengthened by exercise, and the question to be settled is whether characters acquired in this way by exercise and practice can be transmitted to the following generations. Lamarck’s theory assumes that such transmission takes place, for without it no accumulation or increase of the characters in question would be possible, as a result of their exercise during any number of successive generations.

      Against this we may urge that whenever, in the course of nature, an organ becomes stronger by exercise, it must possess a certain degree of importance for the life of the individual, and when this is the case it becomes subject to improvement by natural selection, for only those individuals which possess the organ in its most perfect form will be able to reproduce them. The perfection of form of an organ does not however depend upon the amount of exercise undergone by it during the life of the organism, but primarily and principally upon the fact that the germ from which the individual arose was predisposed to produce a perfect organ. The increase to which any organ can attain by exercise during a single life is bounded by certain limits, which are themselves fixed by the primary tendencies of the organ in question. We cannot by excessive feeding make a giant out of the germ destined to form a dwarf; we cannot, by means of exercise, transform the muscles of an individual destined to be feeble into those of a Hercules, or the brain of a predestined fool into that of a Leibnitz or a Kant, by means of much thinking. With the same amount of exercise the organ which is destined to be strong, will attain a higher degree of functional activity than one that is destined to be weak. Hence natural selection, in destroying the least fitted individuals, destroys those which from the germ were

Скачать книгу


<p>42</p>

Upon this subject Pflüger states—‘I have made myself accurately acquainted with all facts which are supposed to prove the inheritance of acquired characters,—that is of characters which are not due to the peculiar organization of the ovum and spermatozoon from which the individual is formed, but which follow from the incidence of accidental external influences upon the organism at any time in its life. Not one of these facts can be accepted as a proof of the transmission of acquired characters.’ l. c. p. 68.

<p>43</p>

‘Physiologie der Zeugung.’

<p>44</p>

See ‘Ueber die Uebung,’ Berlin, 1881.