Скачать книгу

of carbon to two of oxygen. Every ton of coal that is burned sends off three and two-thirds tons of this gas. The increase in weight comes from the fact that every atom of carbon unites with two of oxygen, which it takes from the air, and the oxygen is heavier than the carbon.

      In comparing the relative weights of atoms (the smallest combinable particle of a solid, liquid, or gas) we use the hydrogen atom as the unit of comparison and call it "one," because it is the lightest of all atoms. The carbon atom is twelve times heavier than the hydrogen atom, and the oxygen atom is sixteen times heavier. Hence it will be seen readily how a ton of coal will form two and two-thirds times its weight of carbonic dioxide. Lime, having a strong affinity or attraction for this gas, has absorbed it from the air and water, forming what is known as carbonate of lime – which is the ordinary limestone. Chalk and the various marbles are also carbonates of lime. Limestone strata in the crust of the earth are found in all the periods of the earth's formation. All forms of sea shells that were once the homes of animal life are constructed of this compound; and in the later formations of limestone, in the Secondary and Tertiary periods, we find this rock to be made up almost entirely of marine shells, some of them microscopic in size. The earlier or older formations of limestone that are found deeper down in the earth's crust are less mingled with these marine shells. This comes from the fact that the first deposition of limestone strata occurred before the later forms of sea life had developed. Whatever signs of life are found in these lower stratifications are of the very lowest order. It is not to be understood that animal life is a necessary factor in the formation of limestone, but it has been an incidental feature which no doubt has been the chief means of gathering up from the water this compound and precipitating it into the great limestone strata that are everywhere found.

      Carbonate of lime is found in solution in nearly, if not quite, all of the mineral waters, and is also found in the water of the ocean. In earlier times it must have been held in solution in much greater quantities than at present. The myriads of sea animals that existed, and that still exist, gathered from the water this substance, which formed their shells, and served as a house in which they lived. New germs were continually forming new shells, while the older ones ceased to live as animals, and their houses in which they lived were precipitated to the bottom of the ocean, where they were bound together as limestone rock. These sea animals no doubt caused a much more rapid formation of limestone than would or could have been the case without their existence.

      One can thus readily see what an important factor animal life has been in the process of world-building. This process is still going on, but probably not to the same extent as in former ages, because it is not likely that there is so much carbonate of lime held in solution as there was before these great limestone beds were formed. Limestone, however, is easily disintegrated by the action of water. We find the spring water impregnated with it as well as that of the small streams and rivers. Pure water is a powerful solvent. When the rains fall upon the earth the water percolates through it and through the limestone strata, which gradually wears away the limestone and carries it back to the ocean, so that the process of tearing down and building up is continually going on. The great caves that are found everywhere in the limestone regions were formed by the action of water. The great Mammoth Cave of Kentucky, which is said to have 200 miles of underground passages, has been entirely worn out by the action of running water.

      Some years ago the writer visited this cave and had an opportunity to study the wonderful eroding or gnawing-out effect of water on limestone. At some period earlier in the history of the earth there was evidently an underground river or large stream of water that found its way through the crevices of the rocks, and gradually wore out a great bed for itself, which was fed by lateral streams pouring into the main branch, each one of which lateral branches cut its own channel. A plan view of the Mammoth Cave presents a picture not unlike that of a great river with numerous branches emptying into it, all of them showing the windings such as we see in a river and its feeders upon the surface of the earth. There are three sets of these channels, one above the other, and we do not find the water till we get to the bottom of the third underground story, so to speak. There is one place in this system of underground channels where the dripping from the roof of the upper channels has cut a great well hole many feet in diameter perpendicularly down through the whole system to a great depth. The sides of this great well hole are fluted into grooves caused by the constant downflow of the water. Although the amount of water flowing down through this well hole is very small, it is continually at work. Like interest on money, it never rests, each minute that passes has eaten away some of the great rock.

      In other portions of the cave the dripping of the water is so gradual that the carbonate of lime hardens and forms what are called stalactites, that hang like icicles from the roof of the cave. Sometimes the water runs down so slowly upon these stalactites that it evaporates as fast as it appears, leaving behind its little load of carbonate of lime. If, however, there is a drip, there are formations built also from the lime in the dropping water on the floor of the cave, and these are called stalagmites. In time the stalactites and the stalagmites will meet, forming a great column reaching from floor to ceiling. Some of these formations, when they are free from foreign substances, are very beautiful. They are also very hard, giving off a metallic musical tone when struck by any hard substance.

      We have already stated that limestone is a compound of ordinary lime and carbon dioxide, forming a carbonate of lime. This statement does not give a complete analysis of all the elements entering into limestone. In the first place lime itself is a compound formed of two elementary substances, calcium and oxygen. The lime molecule is composed of one atom of calcium and one of oxygen. Neither calcium nor lime is found pure in nature. Inasmuch as carbon dioxide is composed of one atom of carbon and two of oxygen, and lime is composed of one atom of calcium and one of oxygen, when we have the two combined the molecule of carbonate of lime, or, as it is technically called, calcic carbonate, is composed of one atom of calcium, one of carbon and three of oxygen, (lime plus carbon dioxide).

      As before stated, lime is not found un-combined with other substances in nature. And as it is of great economic importance, it will be profitable to know how it is formed. Lime is produced from ordinary limestone by burning it in kilns where it is subjected to a heat of a certain temperature for a number of hours. The heat drives off the carbon dioxide, which, as we have seen, has taken away from each molecule of the compound all of the carbon and two atoms of the oxygen, while all of the calcium is retained with one atom of oxygen, leaving ordinary lime. Lime, then, is simply oxide of calcium.

      As all know, it is used almost exclusively for making mortar for building purposes. In order to do this we have to put it through the process of "slacking," by pouring water upon it, and here another chemical change takes place. The water unites with the lime, when immediately the heat that was expended in throwing off the carbon dioxide and was stored in the lime as energy is now given up again in the form of heat. When a considerable bulk of lime is slacked very rapidly the heat that is given off is so great that it will produce combustion. Here is a beautiful illustration of what has been erroneously called "latent heat." It is "heat stored as potential energy," that is released by the combination of lime with water. Slackened lime, then, is called calcic hydrate.

      Very little of the limestone that we find is absolutely pure. It is considered good when it does not contain over five or six per cent. of foreign substance. When more than this is present the lime is considered poor, and when it reaches fifteen per cent. or more of impurities it assumes the property of hardening under water and is called cement.

      Carbonate of lime is found in several other forms; for instance, the various kinds of marble and chalk are carbonates of lime. The composition of marble and chalk is exactly the same as that of limestone. The difference is chiefly one of molecular rather than chemical structure. Marble is what chemists would call an allotropic or changed form of limestone; and, as before stated, the difference seems to consist in the fact that the marble assumes a crystalline arrangement of its atoms and will therefore take a high polish, which is not true of ordinary limestone. Marble varies greatly in coloring and texture, all of which differences are explainable under the one head of molecular arrangement. Nearly pure carbon exists in three distinct forms – the diamond, graphite, and charcoal. As is the case with marble, these differences in the different forms of carbon are not chemical, but molecular differences. The substances are the same, but their infinitesimal particles are differently arranged.

      Carbonate

Скачать книгу