Скачать книгу

the “theoretical” reason for the relatively late origin of qualimetry as a general method for quality quantification. (Late, that is, in comparison with the origins of the methods of measurement of the two other characteristics of any production output; quantity and cost.)

      Practical Reason for the Relatively Late Origin of Qualimetry

      There is a second reason, which we tentatively call “practical”. Its nature can be educed after we answer the question: Why qualimetry as an independent science was born as late as the mid-20th century if early quality quantification methods had appeared in and outside Russia already in the early twentieth century? We shall try to answer this question by drawing upon materials from the history of domestic science and engineering.

      In Russia, the well-known mechanic and shipbuilder A. N. Krylov developed the first scientifically grounded quality measurement method back in the 1910s. He used it to solve the problem of choosing the best warship design from the many submitted to an international competition. (The best here refers to the totality of main properties, or quality, e.g. speed, protection, gun power, etc.). That selection was necessary for the restoration of the Russian navy after the heavy losses it sustained during the Russo-Japanese war.

      Unfortunately, the Krylov method – which retains its importance among the many other qualimetric techniques to this day – upon development and successful application fell into oblivion, perhaps because it was designed for appraising the quality of rather unique objects, warships; a description of it could be found in a relatively obscure, almost rare publication (see [4]).

      Some 20 years after Krylov’s method other methods for assessing the quality of different types of products appeared. They used a very different approach: where as warships were evaluated by the so-called “analytical” (i.e. non-expert) method, here a kind of expert approach was used. These methods began to evolve from the late 1920s, when the Special Council on Product Quality under the Presidium of the Supreme Economic Council of the U. S. S. R. found it necessary to use quality indices as an important tool in promoting technological progress and improving product quality. The reference was not to indexes of particular properties but to general (complex) parameters characterising product quality in general.

      An essentially similar approach was used to assess the quality of some processes, for example, the performance of a printing shop. At the same time, so-called “comparative quality factors”, which had a regulatory character, were developed for some consumer products.

      In the 1930s, the scope of application of expert methods for quality estimation expanded and they were incorporated in some industries and national standards as well as in departmental guidelines. For example, the first half of the 1930s saw the development and application of methods for evaluating the quality of some foodstuffs such as butter, canned fish, bread, confectionery and dried vegetables.

      Similar techniques were developed not only for food products but also for consumer goods, such as cotton yarn, fabrics and textile goods, and for evaluating the quality of industrial products, e.g. tractors and farm machinery.

      Quality measurement methods multiplied after WWII, in the 1950s. However, qualimetry did not emerge as an independent scientific discipline yet. Apparently, a general pattern relating to the conditions leading to the appearance of a new research topic was at work. Indeed, history shows us that before a knowledge field receives the status of a science there is a latent period when some of its principles and methods are generated and put to test. It is followed by the accumulation of a large body of unsystematised empirical data. At the same time the need may be felt for conceptualisation of the previous experience of generating those data and addressing emerging problems. The preconditions for a theoretical foundation of a new science are thus created. So emerged geometry in the ancient world. So emerged cybernetics, bionics, semiotics, operations research, econometrics, ergonomics, ecology, etc., in today’s world. So, again, it was in 1968 that qualimetry began to grow into a fully-fledged scientific discipline [3].

      More recently qualimetry split into two separate branches or independent disciplines— applied qualimetry and theoretical qualimetry, which are briefly described below.

      Theoretical Qualimetry

      Qualimetry has evolved one more branch, theoretical qualimetry, which explores general methodological issues and problems of quantitative estimation of the quality of an abstract mathematical object rather than that of any particular objects (things, phenomena or processes). The rise of theoretical qualimetry served as a decisive argument in favour of making qualimetry into an independent scientific area. The fact is that an overwhelming majority of the quality evaluation methods that were proposed in and outside Russia before 1968 lacked of any comprehensive scientific justification and constituted, in effect, a mass of empirical data wanting analysis, justification and generalisation. (The only exceptions were the Krylov method and a 1928 paper by the Russian philosopher and theologian P. A. Florensky, dedicated to one of the problems of quantitative estimation of quality [5]).

      An almost similar situation in the field of quantitative estimation of quality evolved elsewhere.

      Then came a time when someone had to recognise the need for analysing, rationalising and generalizing the wealth of accumulated empirical material within a separate scientific discipline. Recognition could come somewhat earlier or somewhat later but it was bound to happen at around that time, in the 1960s or “70s.

      Applied Qualimetry

      This discipline seeks to develop applied techniques for evaluating the quality of new, here therefore unevaluated types of objects (things, phenomena and processes). The essence of this type of qualimetric research is described by the term applied qualimetry, which is one of the two branches of qualimetry as an independent scientific discipline. In this respect there appeared different sub disciplines, such as geographical qualimetry, automatic-machine qualimetry, construction engineering qualimetry, educational qualimetry, geodesic qualimetry, fabric qualimetry, etc.

      Qualimetry Institutionalised

      It happened that the first to arrive at this idea was a group of Soviet scientists (economists, civil engineers, car makers, architects), who were dealing with the problem of quantitative evaluation of quality. Gathering at an informal workshop in Moscow in November 1967, they came to the following conclusions:

      1. The group members (Azgaldov, Glichev, Krapivensky, Kurachenko, Panov, Fedorov and Shpektorov) as well as some other researchers working on similar tasks were doing the same thing in terms of methodology, namely, trying to quantify quality, albeit in relation to quite different objects.

      2. In their pursuits they faced almost identical scientific problem, and they used tools based on some common and similar concepts.

      3. To achieve success in solving these problems and to improve the tools used it was advisable to bring together researchers engaged in quality evaluation in both the U. S. S. R. and abroad.

      4. Such a pooling of efforts could best be achieved in the framework of a joint research activity that met all the conditions qualifying it as an independent scientific discipline.

      5. The most suitable name for that discipline was qualimetry. Indeed, the Greek root metreo has become commonly accepted in the international lexicon of science. As for the Latin root qualis, its derivative words in the majority of the languages accounting for the bulk of scientific and technical literature means “quality” (cualidad in Spanish, qualità in Italian, kwaliteit in Dutch, Qualität in German).

      Therefore, the term qualimetry is quite handy: it is concise and it accurately renders the scope of the “quality measurement” concept; its main components are intelligible to people speaking different languages; its structure makes it easy to form any derivative words like qualimetrologist (a qualimetry scientist), qualimetric approach (quality measurement approach) etc.

      Furthermore, this term

Скачать книгу