Скачать книгу

заключается в присвоении нулевых значений вероятности тем мирам, которые не согласуются с полученной информацией, и нормализации распределения вероятности оставшихся возможных миров. Результатом становится «апостериорное распределение вероятности» (которое агент может использовать в качестве априорного на следующем шаге). По мере того как агент проводит свои наблюдения, распределение вероятности концентрируется на все сильнее сжимающемся наборе возможных миров, которые согласуются с полученными свидетельствами; и среди этих возможных миров наибольшую вероятность всегда имеют самые простые.

      Образно говоря, вероятность похожа на песок, рассыпанный на большом листе бумаги. Лист разделен на области различного размера, каждая из которых соответствует одному из возможных миров, причем области большей площади эквивалентны более простым мирам. Представьте также слой песка или любого порошка, покрывающего бумагу, – это и есть наше априорное распределение вероятности. Когда проводится наблюдение, в результате которого исключаются какие-то из возможных миров, мы убираем песок из соответствующих областей и распределяем его равномерно по областям, «остающимся в игре». Таким образом, общее количество песка на листе остается неизменным, просто по мере накопления наблюдений он концентрируется во все меньшем количестве областей. Здесь представлено описание обучения в его самом чистом виде. (Чтобы рассчитать вероятность гипотезы, мы просто измеряем количество песка во всех областях, соответствующих возможным мирам, в которых эта гипотеза истинна.)

      Итак, мы определили правило обучения. Чтобы получить агента, нам потребуется также правило принятия решений. Для этого мы наделяем агента «функцией полезности», которая присваивает каждому возможному миру определенное число. Это число представляет собой желательность соответствующего мира с точки зрения базовых предпочтений агента{34}. (Чтобы выявить действие с максимальной ожидаемой полезностью, агент мог бы составить список всех возможных действий. А затем рассчитать условное распределение вероятности с учетом каждого действия – то есть распределение вероятности, которое стало бы следствием обусловливания текущего распределения вероятности после наблюдения за результатами этого действия. И наконец, рассчитать ожидаемую ценность действия можно как сумму ценностей всех возможных миров, умноженных на условную вероятность этих миров с учетом осуществления действия{35}.)

      Правило обучения и правило принятия решений задают «определение оптимальности» агента. (В сущности такое же определение оптимальности широко используется в искусственном интеллекте, эпистемологии, философии науки, экономике и статистике{36}.) В реальном мире такого агента получить невозможно, поскольку для проведения необходимых расчетов не хватит никаких вычислительных мощностей. Любая попытка сделать это приводит

Скачать книгу


<p>34</p>

Или случайным образом выбирает одно из возможных действий с максимальной ожидаемой полезностью, если их несколько.

<p>35</p>

Более сжато ожидаемая полезность действия может быть записана как , где сумма берется по всем возможным мирам.

<p>36</p>

См., например: [Howson, Urbach 1993; Bernardo, Smith 1994; Russell, Norvig 2010].