Скачать книгу

множество является заданным корректно тогда и только тогда, когда условие, задающее множество, позволяет относительно любого элемента, принадлежащего любому, а, следовательно, и данному множеству, однозначно ответить на вопрос принадлежит этот элемент данному множеству или нет. Таким образом, задание множества позволяет относительно всех существующих в мире объектов формулировать однозначные высказывания о принадлежности любого из этих объектов заданному множеству. В противном случае множество не является корректно заданным, и, следовательно, не является множеством в точном смысле этого слова.

      Использование абстрактных математических моделей в психологии, видимо, не ограничивается только описанием различных психических процессов и явлений. Познавательные психические процессы человека сами представляют собой модели объектов внешнего мира, и с этой точки зрения их удобно представлять теми или иными алгебраическими моделями. По ходу изложения мы будем стараться иллюстрировать эту мысль. Здесь мы покажем, что всякий отраженный в сознании человека объект является множеством (в точном смысле этого слова). Подтверждением тому может служить психологический принцип предметности восприятия, объясняющий факты, полученные в экспериментах с так называемыми двойственными изображениями (черный – белый крест, жена – теща, два профиля – ваза). Выяснено, что при рассматривании такой картинки человек может в каждый фиксированный момент времени воспринимать либо одно, либо другое изображение, но никогда не может видеть одновременно оба креста. Здесь нам, однако, могут возразить, что человек способен думать одновременно о двух нарисованных крестах. Действительно, посредством мысли человек может осуществить операции объединения этих объектов, получив в результате некоторое новое множество, но при этом в каждый фиксированный момент времени человек может думать только о каком-то конкретном множестве, даже если оно получено как комбинация других. В книге Ф. Д. Горбова и В. И. Лебедева (85) описаны случаи; когда человек оказывался в условиях, требующих одновременной переработки информации о различных (или даже одинаковых, но по-разному заданных) множествах объектов. Авторы показывают, что в такой ситуации мозг человека отказывается работать, и наступает временная потеря сознания.

      В приведенных примерах мы коснулись таких важных понятий, как подмножество данного множества, элемент множества, объединение множеств. Сейчас мы определим точно эти и некоторые другие важные понятия теории множеств. Введем некоторые обозначения. Как это и делается обычно, множества мы будем обозначать большими буквами латинского алфавита А, В, …, элементы соответствующих множеств – маленькими буквами a, i … Знак ∈ означает принадлежность элемента множеству. Например: а А означает, что а, является элементом множества А, если же он таковым не является, то используют знак ∉: а А. Если имеем дело с множествами, состоящими

Скачать книгу