ТОП просматриваемых книг сайта:
Нейронные сети. Александр Чичулин
Читать онлайн.Название Нейронные сети
Год выпуска 0
isbn 9785006012639
Автор произведения Александр Чичулин
Издательство Издательские решения
6. Самоорганизующиеся карты (SOM): SOM, также известные как карты Кохонена, представляют собой неконтролируемые нейронные сети, используемые для кластеризации и визуализации. Они используют соревновательное обучение для отображения многомерных входных данных на сетку более низкой размерности. SOM могут фиксировать топологические отношения между точками данных, что позволяет эффективно кластеризовать и визуализировать сложные структуры данных.
7. Генеративно-состязательные сети (GAN): GAN состоят из двух нейронных сетей – генератора и дискриминатора, которые конкурируют друг с другом. Сеть генераторов создает синтетические образцы данных, в то время как сеть дискриминаторов пытается отличить настоящие образцы от поддельных. GAN используются для таких задач, как создание реалистичных изображений, улучшение дополнения данных и синтез данных.
Это всего лишь несколько примеров типов нейронных сетей, и есть еще много специализированных архитектур и вариаций, адаптированных для конкретных приложений. Выбор типа нейронной сети зависит от характера проблемы, имеющихся данных и желаемых результатов.
– Архитектура нейронной сети
Архитектура нейронной сети относится к дизайну и структуре нейронной сети, включая расположение слоев, количество нейронов в каждом слое и связи между ними. Архитектура играет решающую роль в определении возможностей и производительности сети. Вот некоторые ключевые аспекты архитектуры нейронной сети:
1. Входной слой: Входной слой – это первый слой нейронной сети, и он получает исходные данные для обработки. Количество нейронов во входном слое соответствует количеству входных признаков или измерений в данных.
2. Скрытые слои: Скрытые слои – это промежуточные слои между входным и выходным слоями. Количество и размер скрытых слоев зависят от сложности задачи и объема доступных данных. Глубокие нейронные сети имеют несколько скрытых слоев, что позволяет им изучать более сложные представления.
3. Нейроны и функции активации: Нейроны – это вычислительные единицы в каждом слое нейронной сети. Каждый нейрон получает входные данные от предыдущего слоя, выполняет вычисления с использованием функции активации и выдает выход. Общие функции активации включают сигмоид, ReLU, tanh и softmax, каждая из которых имеет свои характеристики и преимущества.
4. Связь нейронов: Связь между нейронами определяет, как информация проходит по сети. В нейронных сетях с прямой связью нейроны в соседних слоях полностью связаны, то есть каждый нейрон в одном слое связан с каждым нейроном