ТОП просматриваемых книг сайта:
All sciences. №1, 2023. International Scientific Journal. Ibratjon Xatamovich Aliyev
Читать онлайн.Название All sciences. №1, 2023. International Scientific Journal
Год выпуска 0
isbn 9785005958990
Автор произведения Ibratjon Xatamovich Aliyev
Издательство Издательские решения
In 1970, the International Astronomical Union named a crater on the far side of the moon after Tesla. The asteroid (2244) is named after him Tesla. Thanks to a grant allocated by 2020 ($750,000), the Tesla Research Center in Wardencliff (New York, USA) will turn one laboratory into a museum of Tesla and his legacy, as well as an educational and research center; at the same time, a corresponding program in the field of entrepreneurship and technology will be created.
In the fall of 1937, in New York, 81-year-old Tesla left the New Yorker Hotel to feed the pigeons at the cathedral and library, as usual. Crossing the street a couple of blocks from the hotel, Tesla could not dodge a moving taxi and fell, suffering a back injury and a fracture of three ribs. Tesla refused the services of a doctor, which he followed before, and never fully recovered. The incident caused acute pneumonia, which turned into a chronic form. Tesla was bedridden for several months and was able to get up again in early 1938.
A war has begun in Europe. Tesla was deeply worried about his homeland, which was under occupation, repeatedly making fervent appeals for peace to all Slavs (in 1943, after his death, the first Guards Division of the People's Liberation Army of Yugoslavia was named Nikola Tesla for his courage and heroism). On January 1, 1943, Eleanor Roosevelt, the wife of the US president, expressed a wish to visit a sick Tesla. Tesla's nephew Sava Kosanovich visited him on January 5 and arranged a meeting. He was the last person to communicate with Tesla.
Nikola Tesla died in his New Yorker Hotel room on the night of January 7-8, 1943, at the 87th year of his life. The body was discovered on January 8 by the maid Alice Monahan, who entered the room despite the "do not disturb" sign posted by Tesla on January 5. According to the coroner's report, death occurred around 22:30 at night, presumably from coronary thrombosis. On January 12, the body was cremated, and the urn with the ashes was installed at Ferncliffe Cemetery in New York. In 1957, it was moved to the Nikola Tesla Museum in Belgrade.
PHYSICAL AND MATHEMATICAL SCIENCES
CO2 GAS CONCENTRATION MONITORING DEVICE
UDC 620.191
Qo’ldashov Obbozjon Xakimovich
Doctor of Technical Sciences, Professor of the Scientific Research Institute "Physics of Semiconductors and Microelectronics" at the National University of Uzbekistan
Bekchanov Ulug’bek Qo’ziboy o’g’li
2nd year Master of the Department of "Physics of Semiconductors and Polymers" of the Faculty of Physics of the Mirzo Ulugbek National University of Uzbekistan
Scientific Research Institute «Physics of Semiconductors and Microelectronics» at the National University of Uzbekistan
Annotation. The article discusses the principles of constructing an optoelectronic device for monitoring the concentration of CO2 gases. Intense absorption lines of CO2 gases have been determined. The optoelectronic device uses LEDs based on GaAlAsSb/GaInAsSb/GaAlAsSb (3.12 microns) as the emitting diode at the reference wavelength, and LEDs based on GaAlAsSb/GaInAsSb/GaAlAsSb (3.39 microns) as the emitting diode at the measuring wavelength.
Keywords: gas analyzer, carbon dioxide, control, flowchart, time diagrams.
Аннотация. В статье рассматриваются принципы построения оптоэлектронного устройства для контроля концентрации CO2 газов. Определены интенсивные линии поглощения CO2 газов. В оптоэлектронном устройстве использованы в качестве излучающего диода на опорной длине волне светодиоды на основе GaAlAsSb/GaInAsSb/ GaAlAsSb (3.12 мкм), а излучающего диода на измерительной длине волны светодиоды на основе GaAlAsSb/GaInAsSb/GaAlAsSb (3.39 мкм).
Ключевые слова: газоанализатор, углекислые газы, контроль, блок схема, временные диаграммы.
In recent years, more and more attention has been attracted to the problems of using clean unconventional renewable energy sources (NVE) for the needs of energy supply to various agricultural and industrial facilities. The relevance and prospects of this energy sector are due to two main factors: the catastrophically difficult situation of the environment and the need to search for new types of energy.
The successes achieved in the creation of wind, solar and a number of other types of unconventional power plants are widely covered in various works, recently much attention has been paid to geothermal energy. The prospects for using the Earth's heat energy are truly limitless, because under the surface of our planet, which is a giant natural energy boiler, huge reserves of heat and energy are concentrated.
Today, geothermal energy is actively developing in Uzbekistan. On the territory of Uzbekistan, forecast geothermal resources at accessible depths (up to 5-6 km) are 4-6 times higher than hydrocarbon resources. The main consumers of geothermal resources in the near and long term in Uzbekistan will undoubtedly be heat supply and, to a much lesser extent, electricity generation.
By absolute value, of all types of renewable energy, the subsoil of Uzbekistan has the greatest integral energy potential in the form of heat from dry rocks (petrothermal resources) and large basins with hydrothermal waters.
Geothermal waters are available in all regions of Uzbekistan. Long-term surveys have allowed to identify 8 large basins with hydrothermal resources on its territory. The gross potential of geothermal waters is estimated at 171 thousand tons. However, the technical potential of geothermal sources has not yet been determined. The Fergana Valley and Bukhara Viloyat have the greatest potential of geothermal waters. The average temperature of geothermal waters in the republic is 45.5 °C, the warmest waters are in Bukhara (56 °C) and Syrdarya (50 °C) viloyats. It should be noted that the practical realization of the energy of geothermal waters is associated with the development of appropriate environmental measures due to their chemical composition. Petrothermal energy resources in the form of dry rocks with temperatures from 45 to 300 °C have also been identified in the country. The realization of the potential of petrothermal energy (heat of dry rocks, granitoids) can be carried out using power plants on low-boiling working bodies with a block capacity of 40 MW on the basis of the Chust-Adrasman petrothermal anomaly in the Fergana Valley [1].
The main advantage of geothermal energy is its practical inexhaustibility and complete independence from environmental conditions, time of day and year [2-3]. Geothermal energy owes its "design" to the red-hot central core of the Earth, with a huge supply of thermal energy. Only in the upper three-kilometer layer of the Earth is stored the amount of thermal energy equivalent to the energy of about 300 billion tons of coal [4].
Figure