Скачать книгу

математики утверждают, будто они дают точное определение прямой линии, когда говорят, что она есть кратчайшее расстояние между двумя точками. Но, во-первых, замечу я, это скорее указание на одно из свойств прямой линии, чем ее точное определение. Я спрошу кого угодно: разве при упоминании о прямой линии вы не думаете немедленно о некотором определенном внешнем виде и не совершенно ли случайно вы рассматриваете при этом упомянутое свойство? Прямую линию можно представить саму по себе, тогда как указанное определение непонятно без сравнения данной линии с другими, которые мы представляем себе более протяженными. В обыденной жизни считается общепризнанным правилом, что самый прямой путь всегда самый краткий; но [говорить] так было бы столь же глупо, как и утверждать, что кратчайший путь всегда есть кратчайший, если бы наша идея прямой линии не была отлична от идеи кратчайшего пути между двумя точками.

      Во-вторых, я повторю то, что уже доказано мной, а именно что у нас нет точной идеи не только о прямой и кривой линиях, но и о равенстве и неравенстве, о более кратком и более долгом и что, следовательно, ни одна из них не может дать нам совершенного образца для других. Точная идея никогда не может быть построена на чем-то смутном и неопределенном.

      К идее плоской поверхности так же мало приложим точный образец, как и к идее прямой линии, и у нас нет другого способа различения такой поверхности, кроме [рассмотрения] ее общего вида. Напрасно математики представляют, будто плоская поверхность образуется путем непрерывного передвижения (flowing) прямой линии. На это тотчас можно возразить, что наша идея поверхности так же независима от этого способа образования поверхности, как наша идея эллипса от идеи конуса; что идея прямой линии не точнее идеи плоской поверхности; что прямая линия может передвигаться неправильно и образовать таким образом фигуру, совершенно отличную от плоской поверхности, и что в силу этого мы должны предполагать ее передвигающейся вдоль двух прямых линий, параллельных друг другу, и в той же плоскости, но это такое описание, которое объясняет вещь с помощью ее самой, т. е. вращается в замкнутом кругу.

      Итак, наиболее существенные для геометрии идеи, как то: идеи равенства и неравенства, прямой линии и плоской поверхности – при обычном для нас способе их представления, по-видимому, далеко не точны и неопределенны. В сколько-нибудь сомнительном случае мы не только не в состоянии сказать, когда такие-то определенные фигуры равны, когда такая-то линия прямая, а такая-то поверхность плоская; мы даже не можем образовать устойчивой и неизменной идеи этого соотношения или этих фигур. Мы и тут прибегаем к слабому и подверженному ошибкам суждению, которое образуем на основании внешнего вида объекта и исправляем с помощью циркуля или общепринятой меры; всякое же предположение о дальнейшем исправлении является или бесполезным, или воображаемым. Напрасно стали бы мы прибегать к обычному

Скачать книгу