Аннотация

This book is an introduction to the basics of surface science. The Nobel Prize winner Wolfgang Pauli's statement, 'God made solids, but surfaces were the work of the devil!' emphasizes the diabolic nature of surfaces. Surfaces are the external border of materials to the external worlds, thus by exploring surfaces one can investigate the material. In the last few decades new and exciting surface properties have been explored in nanomaterials, low-dimensional structures in electronic and photonic devices and other numerous applications.

Аннотация

Renewable energy (RE) is a subject of great interest today. It is one of the two main means for implementing climate change mitigation programmes, and presently the only perceived means for replacing the declining global fossil fuel reserves. It also helps fight poverty and assists in the global quest for gender equity by taking clean energy where it is needed most for development. It is perhaps not surprising therefore that there is so much coverage of RE in both the conventional media and the internet by media and tech writers, economists and bloggers, many of who only have a partial understanding of the technology itself. The end result is mostly promotional rhetoric that says little about the true value of the technology, and leads to a confused picture for the serious individual or decision-maker who wants to know what the technology is really capable of doing. This book provides a clear and factual picture of the status of RE and its capabilities today. The need for such a book was first realized by the author when he was engaged in a renewable energy capacity-building project encompassing countries from Europe, the Caribbean, Africa, and the Pacific. The book is largely non-technical in nature; it does however contain enough mention of the science and technology to enable readers to go further with their own investigations should they wish to. The book covers all areas of renewable energy (RE), starting from biomass energy and hydropower and proceeding to wind, solar and geothermal energy before ending with an overview of ocean energy. It begins with a simple introduction to the physical principles of the RE technologies, followed by an enumeration of the requirements for their successful implementation. The last two chapters consider how the technologies are actually being implemented today and their roles in climate change mitigation and poverty alleviation.

Аннотация

The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.

Аннотация

Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

Аннотация

Our aim in this book is to present a bird's-eye view of microwave tubes (MWTs) which continue to be important despite competitive incursions from solid-state devices (SSDs). We have presented a broad and introductory survey which we hope the readers would be encouraged to read rather than going through lengthier books, and subsequently explore the field of MWTs further in selected areas of relevance to their respective interests. We hope that the present book would motivate newcomers to pursue research in MWTs and apprise them as well as decision makers of the salient features and prospects of as well as the trends of progress in MWTs. The scope of ever expanding applications of MWTs in the high power and high frequency regime will sustain and intensify the research and development in MWTs in coming years.

Аннотация

The concept of reciprocal space is over 100 years old, and has been of particular use by crystallographers in order to understand the patterns of spots when x-rays are diffracted by crystals. However, it has a much more general use, especially in the physics of the solid state. In order to understand what it is, how to construct it and how to make use of it, it is first necessary to start with the so-called real or direct space and then show how reciprocal space is related to it. Real space describes the objects we see around us, especially with regards to crystals, their physical shapes and symmetries and the arrangements of atoms within: the so-called crystal structure. Reciprocal space on the other hand deals with the crystals as seen through their diffraction images. Indeed, crystallographers are accustomed to working backwards from the diffraction images to the crystal structures, which we call crystal structure solution. In solid state physics, one usually works the other way, starting with reciprocal space to explain various solid-state properties, such as thermal and electrical phenomena. In this book, I start with the crystallographer's point of view of real and reciprocal space and then proceed to develop this in a form suitable for physics applications. Note that while for the crystallographer reciprocal space is a handy means of dealing with diffraction, for the solid-state physicist it is thought of as a way to describe the formation and motion of waves, in which case the physicist thinks of reciprocal space in terms of momentum or wave-vector k-space. This is because, for periodic structures, a characteristic of normal crystals, elementary quantum excitations, e.g. phonons and electrons, can be described both as particles and waves. The treatment given here, will be by necessity brief, but I would hope that this will suffice to lead the reader to build upon the concepts described. I have tried to write this book in a suitable form for both undergraduate and graduate students of what today we call «condensed matter physics.»

Аннотация

Physicists are very smart people. Still, when it comes to moving their ideas from university to market, they often lack the basic set of know-hows that could help them succeed in the technology transfer process. To fill this gap, Entrepreneurship for Physicists: A Practical Guide to Move Ideas from University to Market offers a concise analysis of the key ingredients that enable entrepreneurs to bring added value to their customers. After a short discussion on why university physicists should pay more attention to this aspect of their professional life, the book dives into a set of theories, models, and tools that could help an academic scientist transform an idea into customer added value. The reader will be introduced to effectuation theory, internal resource analysis, external landscape analysis, value capture, lean startup method, business canvases, financial projections, and to a series of topics that, albeit often neglected, do play a fundamental role in technology transfer, such as trust, communication, and persuasion. In the last chapter, the book explains howmost of the concepts discussed actually find application in the career of scientists in a much broader sense.

Аннотация

Physics and the Environment directly connects the physical world to environmental issues that the world is facing today and will face in the future. It shows how the first and second laws of thermodynamics limit the efficiencies of fossil fuel energy conversions to less than 100%, while also discussing how clever technologies can enhance overall performance. It also extensively discusses renewable forms of energy, their physical constraints and how we must use science and engineering as tools to solve problems instead of opinion and politics. Dr. Kyle Forinash takes you on a journey of understanding our mature and well developed technologies for using fossil fuel resources and how we are unlikely to see huge gains in their efficiency as well as why their role in climate change ought to be an argument for their replacement sooner rather than later. He also discusses the newest technologies in employing renewable resources and how it is important to understand their physical constrains in order to make a smooth transition to them. An entire chapter is dedicated to energy storage, a core question in renewable energy as well as another chapter on the technical issues of nuclear energy. The book ends with a discussion on how no environmental solution, no matter how clever from a technical aspect, will succeed if there are cheaper alternative, even if those alternatives have undesirable features associated with them.

Аннотация

The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.

Аннотация

This book looks at the early history of nuclear power, at what happened next, and at its longer-term prospects. The main question is: can nuclear power overcome the problems that have emerged? It was once touted as the ultimate energy source, freeing mankind from reliance on dirty, expensive fossil energy. Sixty years on, nuclear only supplies around 11.5% of global energy and is being challenged by cheaper energy options. While the costs of renewable sources, like wind and solar, are falling rapidly, nuclear costs have remained stubbornly high. Its development has also been slowed by a range of other problems, including a spate of major accidents, security concerns and the as yet unresolved issue of what to do with the wastes that it produces. In response, a new generation of nuclear reactors is being developed, many of them actually revised versions of the ideas first looked at in the earlier phase. Will this new generation of reactors bring nuclear energy to the forefront of energy production in the future?