Аннотация

A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers. This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects: Hybrid nanostructured materials for development of advanced lithium batteries High performing hybrid nanomaterials for supercapacitor applications Nanohybrid materials in the development of solar energy applications Application of hybrid nanomaterials in water purification Advanced nanostructured materials in electromagnetic shielding of radiations Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants Development of hybrid fillers/polymer nanocomposites for electronic applications High performance hybrid filler reinforced epoxy nanocomposites State-of-the-art overview of elastomer/hybrid filler nanocomposites

Аннотация

The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. Summarizing all the most important synthesis techniques used in the lab as well as in industry, this book is comprehensive in its coverage from chemical, physical and mechanical viewpoints. This book helps readers to choose the correct synthesis route, such as suspension and miniemulsion polymerization, living polymerization, sonication, mechanical methods or the use of radiation, and so achieve the desired composite properties.

Аннотация

With its focus on the characterization of nanocomposites using such techniques as x-ray diffraction and spectrometry, light and electron microscopy, thermogravimetric analysis, as well as nuclear magnetic resonance and mass spectroscopy, this book helps to correctly interpret the recorded data. Each chapter introduces a particular characterization method, along with its foundations, and makes the user aware of its benefits, but also of its drawbacks. As a result, the reader will be able to reliably predict the microstructure of the synthesized polymer nanocomposite and its thermal and mechanical properties, and so assess its suitability for a particular application. Belongs on the shelf of every product engineer.

Аннотация

The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfi eld of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. This book lays the theoretical foundations and emphasizes the close connection between theory and experiment to optimize models and real-life procedures for the various stages of polymer composite development. As such, it covers quantum-mechanical approaches to understand the chemical processes on an atomistic level, molecular mechanics simulations to predict the filler surface dynamics, finite element methods to investigate the macro-mechanical behavior, and thermodynamic models to assess the temperature stability. The whole is rounded off by a look at multiscale models that can simulate properties at various length and time scales in one go – and with predictive accuracy.

Аннотация

The book series «Polymer Nano-, Micro- and Macrocomposites» provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. Thermoset polymers are a class of materials with many superior properties than thermoplastic materials. Nanocomposites with a large variety of thermoset polymers have been explored and vast knowledge on the synthesis methodologies as well as properties has been generated. The goal of the book is to assimilate these research findings on the many thermoset polymer based nanocomposites systems comprehensively so as to generate better insights into the design, performance and optimization of thermoset nanocomposites.

Аннотация

This unique and comprehensive book covers all the recent physical, chemical, and mechanical advancements in encapsulation nanotechnologies. Encapsulation is prevalent in the evolutionary processes of nature, where nature protects the materials from the environment by engulfing them in a suitable shell. These natural processes are well known and have been adopted and applied in the pharmaceutical, food, agricultural, and cosmetics industries. In recent years, because of the increased understanding of the material properties and behaviors at nanoscale, research in the encapsulation field has also moved to the generation of nanocapsules, nanocontainers, and other nano devices. One such example is the generation of self-healing nanocontainers holding corrosion inhibitors that can be used in anti-corrosion coatings. The processes used to generate such capsules have also undergone significant developments. Various technologies based on chemical, physical, and physico-chemical synthesis methods have been developed and applied successfully to generate encapsulated materials. Because of the increasing potential and value of the new nanotechnologies and products being used in a large number of commercial processes, the need for compiling one comprehensive volume comprising the recent technological advancements is also correspondingly timely and significant. This volume not only introduces the subject of encapsulation and nanotechnologies to scientists new to the field, but also serves as a reference for experts already working in this area. Encapsulation Nanotechnologies details in part: The copper encapsulation of carbon nanotubes Various aspects of the application of fluid-bed technology for the coating and encapsulation processes The use of the electrospinning technique for encapsulation The concept of microencapsulation by interfacial polymerization Overviews of encapsulation technologies for organic thin-film transistors (OTFTs), polymer capsule technology, the use of supercritical fluids (such as carbon dioxide), iCVD process for large-scale applications in hybrid gas barriers Readership Encapsulation Nanotechnologiesis of prime interest to a wide range of materials scientists and engineers, both in industry and academia.

Аннотация

A review of the various methodologies for the surface treatment of different types of inorganic spherical and fibrous fillers, describing ball milling, cationic polymerization, vapor phase grafting, plasma treatment and UV irradiation in detail. In addition, the book connects the resulting composite properties to the modified filler surface properties, thus allowing for a purposeful, application-oriented composite design.

Аннотация

Scrutinizing various fillers, such as fly ash, inorganic nanoparticles, Kevlar and wood flour, this book exemplifies how the choice of filler influences the micro- and macroscopic behavior of the resulting polymer composites, such as friction, wear and impact resistance. In so doing, the text brings together a number of composite systems using different polymer matrices, different filler systems as well as different processing conditions, thereby serving as a beneficial guide for readers so as to select a particular set of processing conditions or composite constituents for the enhancement of certain properties.

Аннотация

The book series «Polymer Nano-, Micro- and Macrocomposites» provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to, synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfield of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with infomation relevant to their research, thereby helping to save time and money. In this first volume in the series, authors from leading academic institutions and companies share their first-hand knowledge of nanotube-surface enhancements for use in polymer composites. All the important methods for the functionalization of nanotube fillers, including polymer wrapping, non-covalent modification with nanoparticles, silica layers or entrapped micelles, chemically induced growth of multilayers, techniques based on covalent bonding, such as polmer or quantum dot attachment, and direct polymerization approaches are covered.

Аннотация

One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for applications in areas such as lithium batteries, photovoltaics, and solar cells. Polymers for Energy Storage and Conversion: Introduces the structure and properties of polymer hydrogel with respect to its applications for low to intermediate temperature polymer electrolyte-based fuel cells Describes PVAc-based polymer blend electrolytes for lithium batteries Reviews lithium polymer batteries based on ionic liquids Proposes the concept of the solar cell with organic multiple quantum dots (MQDs) Discusses solvent effects in polymer-based organic photovoltaic devices Provides an overview of the properties of the polymers that factor into their use for solar power, whether for niche applications or for large-scale harvesting Reviews the use of macroporous organic polymers as promising materials for energy gas storage Readership Materials scientists working with energy materials, polymer engineers, chemists, and other scientists and engineers working with photovoltaics and batteries as well as in the solar and renewable energy sectors.