ТОП просматриваемых книг сайта:
IOP Concise Physics
Скачать книги из серии IOP Concise PhysicsАннотация
Have you ever seen a comet? It is a marvelous experience, one that all humans can share, that spawns a deep yearning to understand the spectacle. Have you ever wondered what comets are and why astronomers spend so much time studying them? Now, a comet expert and an astronomical historian have come together to produce the unique book that you now hold in your hands. Using their several decades of teaching experience, the authors have concisely presented the information you need to comprehend these majestic apparitions that grace our night skies. No mathematical proficiency is needed, in fact, this book doesn't contain a single equation! Comets are cosmic Rosetta stones, bridging our current knowledge by digging back to the earliest days of our Solar Systems. How did life arise on Earth? Did comets play a significant role in bringing water and the necessary organic matter to our early Earth? How about the dinosaurs? Were they driven to extinction by a cometary impact 66 million years ago? Comets may be both the enablers and destroyers of life on Earth as we know it. These are some of the tantalizing questions discussed here. If you so desire, steps are given to join the ranks of amateur comet hunters. Astronomy is one of the last sciences where amateurs play a significant role. Your reward for discovery? A comet officially bearing your name in the history books! The next Great Comet is on its way, we just do not know when it will arrive. Armed with this book, you will be ready to enjoy this unforgettable event.
Аннотация
Cold atmospheric plasma (CAP) emerges as a possible new modality for cancer treatment. This book provides a comprehensive introduction into fundamentals of the CAP and plasma devices used in plasma medicine. An analysis of the mechanisms of plasma interaction with cancer and normal cells including description of possible mechanisms of plasma selectivity is included. Recent advances in the field, the primary challenges and future directions are presented.
Аннотация
B Factories are particle colliders at which specific subatomic particles – B mesons – are produced abundantly. The purpose is to study the properties of their decays in great detail in order to shed light on a mystery of eminently larger scale: why do we live in a universe composed of anti-matter? This book introduces readers to the physics laws of the CP asymmetry, touching on experimental requirements needed to perform such measurements at the subatomic level, and illustrating the main findings of the contemporary B Factories.
Can Physics Save Miami (and Shanghai and Venice, by Lowering the Sea)? - Edward Wolf L.
IOP Concise PhysicsАннотация
The sea is steadily rising, presently at ~3.4 mm/y, already costing Billions in Venice, on the Thames River and in New York City, to counter sea-level-related surges. Experts anticipate an accelerated rise, and credible predictions for sea level rise by the year 2100 range from 12 inches to above 6 feet. Study of the Earth's geologic history, through ice-core samples, links sea level rise to temperature rise. Since the lifetime of carbon dioxide in the atmosphere is measured in centuries, and it has upset the balance of incoming and outgoing energy, the Earth's temperature will continue to rise, even if carbon burning ceases. Engineering the Earth's solar input appears increasingly attractive and practical as a means to lower Earth's temperature, and thus, to lower sea level. The cost of engineering the climate appears small, comparable, even, to the already-incurred costs of sea level rise represented by civil engineering projects in London, Venice and New York City. Feasible deployment of geoengineering, accompanied by some reduction in carbon burning, is predicted to lower the sea level by the order of one foot by 2100 AD, negating the expected rise, to provide an immense economic benefit. The accompanying lower global temperature would reduce the severity of extreme weather, and restore habitability to lethally hot parts of the world. This book is primarily conceived to aid and inform the educated citizen: aspects may also interest climate workers.
Аннотация
All living matter is comprised of cells, small compartments isolated from the environment by a cell membrane and filled with concentrated solutions of various organic and inorganic compounds. Some organisms are single-cell, where all life functions are performed by that cell. Others have groups of cells, or entire organs, specializing in one particular function. The survival of the entire organism depends on all of its cells and organs fulfilling their roles. While the cells are studied by different sciences, they are seen differently by biologists, chemists, or physicists. Biologists concentrate their attention on cell structure and function. What does the cell consist of? Where are its organelles? What function does each organelle fulfil? From a chemists' point of view, a cell is a complex chemical reaction chamber where various molecules are synthesized or degraded. The main question is how these, sometimes very complicated chains of reactions are controlled. Finally, from a physics standpoint, one of the main questions is the physical movement of all these molecules between organelles within the cell, as well as their exchange with the extracellular medium. The aim of this book is to look into the basic physical phenomena occurring in cells. These physical transport processes facilitate chemical reactions in the cell and that in turn leads to the biological functions necessary for the cell to satisfy its role in the mother organism. Ultimately, the goals of every cell are to stay alive and to fulfil its function as a part of a larger organ or organism. This book is an inventory of physical transport processes occurring in cells while the second volume will be a closer look at how complex biological and physiological cell phenomena result from these very basic physical processes.
Аннотация
The dynamics of quantum systems exposed to ultrafast (at the femtosecond time-scale) and strong laser radiation has a highly non-linear character, leading to a number of new phenomena, outside the reach of traditional spectroscopy. The current laser technology makes feasible the probing and control of quantum-scale systems with fields that are as strong as the interatomic Coulombic interactions and time resolution that is equal to (or less than) typical atomic evolution times. It is indispensable that any theoretical description of the induced physical processes should rely on the accurate calculation of the atomic structure and a realistic model of the laser radiation as pulsed fields. This book aims to provide an elementary introduction of theoretical and computational methods and by no means is anywhere near to complete. The selection of the topics as well as the particular viewpoint is best suited for early-stage students and researchers; the included material belongs in the mainstream of theoretical approaches albeit using simpler language without sacrificing mathematical accuracy. Therefore, subjects such as the Hilbert vector-state, density-matrix operators, amplitude equations, Liouville equation, coherent laser radiation, free-electron laser, Dyson-chronological operator, subspace projection, perturbation theory, stochastic density-matrix equations, time-dependent Schrödinger equation, partial-wave analysis, spherical-harmonics expansions, basis and grid wavefunction expansions, ionization, electron kinetic-energy and angular distributions are presented within the context of laser-atom quantum dynamics.
Информация о книге
Автор произведения Lampros A A Nikolopoulos
Жанр Физика
Серия IOP Concise Physics
A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics - Antonio Sergio Teixeira Pires
IOP Concise PhysicsАннотация
In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.
Информация о книге
Автор произведения Antonio Sergio Teixeira Pires
Жанр Физика
Серия IOP Concise Physics
Аннотация
Advancement in the field of nanotechnology has revolutionized the field of medicines and pharmaceuticals in the twentieth century. The proper use of nanomaterials in medical applications requires a proper understanding of these compounds. This correct understanding, beyond the physical and chemical properties, must also have the correct logic of use. In other words, the strategic use of nanomaterials with applicable perspective can also help to advance research, but if we go forward with the current research perspective that leads to the expansion of inapplicable researches, the intrinsic importance of using these nanomaterials is eliminated. This book, considering the importance of nanomaterials and their application in medicine, as well as the significant growth of biomaterials in research fields, introduces the variables law (Rabiee's theory) for the implementation of this research and the establishment of a proper strategy. Considering that the degree of number of biomaterial and host variables follow a variety factors, and by increasing the degree of number of biomaterials and host variables, the degree of total variables also increases and as a result, performance and, consequently, biomaterial behavior in the host environment will have less control and predictive capabilities. For an external substance that is supposed to be in the human body, it must be predictable and controllable, In addition, according to the principle that the host in a fixed person does not have the ability to change, therefore, by using the simpler biomaterials (with less variables), the above goal is more accessible. It should be noted that in addition to observing biocompatibility tests for a biomaterial based on existing protocols and standards, the Applicable Compatibility (AC) parameter is also required in accordance with Rabiee's theory. This book is written in accordance with Rabiee's theory and the contents of this book should be evaluated from this perspective.
Аннотация
This book is a sequel to Lectures on Selected Topics in Mathematical Physics: Introduction to Lie theory with applications. This volume is devoted mostly to Lie groups. Lie algebras and generating functions, both for standard special functions and for solution of certain types of physical problems. It is an informal treatment of these topics intended for physics graduate students or others with a physics background wanting a brief and informal introduction to the subjects addressed in a style and vocabulary not completely unfamiliar.
Аннотация
Electrostatic Accelerators have been at the forefront of modern technology since the development by Sir John Cockroft and Ernest Walton in 1932 of the first accelerator, which was the first to achieve nuclear transmutation and earned them the Nobel Prize in Physics in 1951. The applications of Cockroft and Walton's development have been far reaching, even into our kitchens where it is employed to generate the high voltage needed for the magnetron in microwave ovens. Other electrostatic accelerator related Nobel prize winning developments that have had a major socio-economic impact are; the electron microscope where the beams of electrons are produced by an electrostatic accelerator, X-rays and computer tomography (CT) scanners where the X-rays are produced using an electron accelerator and microelectronic technology where ion implantation is used to dope the semiconductor chips which form the basis of our computers, mobile phones and entertainment systems. Although the Electrostatic Accelerator field is over 90 years old, and only a handful of accelerators are used for their original purpose in nuclear physics, the field and the number of accelerators is growing more rapidly than ever. The objective of this book is to collect together the basic science and technology that underlies the Electrostatic Accelerator field so it can serve as a handbook, reference guide and textbook for accelerator engineers as well as students and researchers who work with Electrostatic Accelerators.