ТОП просматриваемых книг сайта:
Supercharge, Invasion, and Mudcake Growth in Downhole Applications. Группа авторов
Читать онлайн.Название Supercharge, Invasion, and Mudcake Growth in Downhole Applications
Год выпуска 0
isbn 9781119283386
Автор произведения Группа авторов
Жанр Физика
Издательство John Wiley & Sons Limited
3 Chapter 3Figure 3.1. Total pumpout of 5 cc, for all three piston scenarios.Figure 3.2a. Constant rate pumping (idealization).Figure 3.2b. FT-00 forward simulator input menu.Figure 3.2c. Pumpout schedule.Figure 3.2d. Source probe pressure.Figure 3.2e. Observation probe pressure.Figure 3.2f. Model 1, for drawdown “pressure-time” data.Figure 3.2g. Inverse pressure buildup problem (Model 2).Figure 3.2h. Inverse worksheet.Figure 3.3a. Slow ramp up/down rate pumping.Figure 3.3b. FT-00 forward simulator input menu.Figure 3.3c. Pumpout schedule.Figure 3.3d. Source probe pressure.Figure 3.3e. Observation probe pressure.Figure 3.3f. Model 6 inverse problem.Figure 3.4a. Impulsive start/stop rate pumping.Figure 3.4b. FT-00 forward simulator assumptions.Figure 3.4c. Pumpout schedule.Figure 3.4d. Source prove pressure.Figure 3.4e. Observation probe pressure.Figure 3.4f. Model 6, inverse solver.Figure 3.5a. “Fast Forward” forward supercharge simulator.Figure 3.5b. Drawdown-buildup with strong supercharge.Figure 3.5c. Drawdown – only curve with supercharge.Figure 3.5d. Drawdown-only inverse supercharge model.Figure 3.5e. Drawdown-buildup inverse supercharge model.Figure 3.6a. Creating FT-00 pressure transient data for an anisotropic simulatio...Figure 3.6b. Source and observation probe pressures versus time at different mag...Figure 3.6c. FT-01 input screen.Figure 3.6d. Drawdown inverse method.Figure 3.6e. Exact direct gas solver for dual probe steady flows.Figure 3.7. Conventional dual and triple probe testers.Figure 3.8. Multiple “receiver” formation tester (having multiple spaced observa...Figure 3.9. Transmitter-receiver, receiver-receiver operations modes (see Chapte...Figure 3.10. Main FT-00 menu, see bottom right “Run” button.Figure 3.11. Depth of investigation, DOI” analysis setup.Figure 3.12a. Flow rate schedule.Figure 3.12b. Source probe response.Figure 3.12c. Pressure response at 10 cm (3.9 in).Figure 3.12d. Pressure response at 20 cm (7.9 in).Figure 3.12e. Pressure response at 20 cm (7.9 in), continued.Figure 3.12f. Pressure response at 50 cm.Figure 3.12g. Pressure response at 90 cm (35 in).Figure 3.13. FT-00 host simulator.Figure 3.14. Batch mode information message.Figure 3.15. Loop parameter setup.Figure 3.16. FT-00 running in automated batch mode (note, ? and ??).Figure 3.17. Option to view pressure plots.Figure 3.18a. Simulation No. 1, input parameters.Figure 3.18b. Simulation No. 1, Source probe response.Figure 3.18c. Simulation No. 1, Observation probe response.Figure 3.19a. Simulation No. 2, with kh = 1 md again, kv increased.Figure 3.19b. Simulation No. 2, Source probe response.Figure 3.19c. Simulation No. 2, Observation probe response.Figure 3.20a. Simulation No. 25, last kh = 500 md, kv = 100 md.Figure 3.20b. Simulation No. 25, Source probe response.Figure 3.20c. Simulation No. 25, Observation probe response.Figure 3.21. Mudcake thickness and hole radius considerations.Figure 3.22. Exact lineal invasion solution (Chin et al., 1986).Figure 3.23a. Radial flow Catscan test vessel.Figure 3.23b. Catscan invasion in radial core sample (inner invaded white zone d...
4 Chapter 4Figure 4.1a. Supercharge problem in formation testing.Figure 4.1b. Linear flow Catscans, thin dark mudcake at center of core and invas...Figure 4.1c. Stuck tool removal mechanism.Figure 4.2. Exact lineal invasion solution (Chin et al., 1986).Figure 4.3. Any surface f(x,y,z,t) = 0 in a reservoir.Figure 4.4. Lineal flow.Figure 4.5. Cylindrical radial flow.Figure 4.6. Spherical flow at the drillbit.Figure 4.7. Simple laboratory mudcake buildup.Figure 4.8. Simple linear flow of two dissimilar fluids.Figure 4.9. Three-layer lineal flow.Figure 4.10. Three-layer radial flow.Figure 4.11. Lineal flow.Figure 4.12. Radial flow test, 15 ppg mud, Δp = 150 psi.Figure 4.13. Radial mudcake growth on filter paper.Figure 4.14. Radial versus lineal mudcake theory.Figure 4.15. Radial invasion without mudcake.Figure 4.16. Numerical results, forward invasion simulation.Figure 4.17. Numerical results, inverse invasion simulation.Figure 4.18. Numerical results, forward invasion simulation.Figure 4.19. Numerical results, inverse invasion simulation.
5 Chapter 5Figure 5.1. Finite difference discretizations.Figure 5.2. Tridiagonal equation solver.Figure 5.3a. Fortran source code (Example 5-1).Figure 5.3b. Numerical results (Example 5-1).Figure 5.3c. Numerical results (Example 5-1).Figure 5.4a. Fortran source code (Example 5-2).Figure 5.4b. Numerical results (Example 5-2).Figure 5.4c. Numerical results (Example 5-2).Figure 5.5a. Numerical results (Example 5-3).Figure 5.5b. Numerical results (Example 5-3).Figure 5.6a. Fortran source code (Example 5-4).Figure 5.6b. Numerical results (Example 5-4).Figure 5.7. Gas displacement by liquid.Figure 5.8a. Fortran source code (Example 5-6).Figure 5.8b. Numerical results (Example 5-6).Figure 5.8c. Numerical results (Example 5-6).Figure 5.9a. Three-layer lineal flow problem.Figure 5.9b. Fortran source code (Example 5-7).Figure 5.9c. Numerical results (Example 5-7).Figure 5.10. Pressure in lineal core.Figure 5.11. Diffusive front motion.Figure 5.12a. A diffusing lineal flow.Figure 5.12b. An “un-diffusing” lineal flow.Figure 5.13a. A diffusing radial flow.Figure 5.13b. An “undiffusing” radial flow.Figure 5.14. Nonlinear saturation solver.Figure