Скачать книгу

alt="StartFraction partial-differential bold-italic chi Over partial-differential t EndFraction left-parenthesis bold upper X comma t right-parenthesis period"/>

      We distinguish this velocity from another notion of velocity that arises by measuring what happens at a fixed position in space, as with an anemometer or wind vane attached to a stationary building. This concept of velocity commonly arises in fluid mechanics. In this case, we differentiate with respect to t, holding the spatial coordinate bold x fixed. To calculate this spatial or Eulerian velocity from the deformation, we first determine which particle bold upper X equals bold-italic chi Superscript negative 1 Baseline left-parenthesis bold x comma t right-parenthesis passes through bold x at time t, then compute the velocity of that particle:

bold v left-parenthesis bold x comma t right-parenthesis equals StartFraction partial-differential bold-italic chi Over partial-differential t EndFraction left-parenthesis ModifyingBelow bold-italic chi Superscript negative 1 Baseline left-parenthesis bold x comma t right-parenthesis With presentation form for vertical right-brace Underscript bold upper X Endscripts comma t right-parenthesis period Geometric representation of the orthonormal basis vectors defining a Cartesian coordinate system. StartFraction upper D f Over upper D t EndFraction left-parenthesis bold upper X comma t right-parenthesis equals StartFraction partial-differential f Over partial-differential t EndFraction left-parenthesis bold upper X comma t right-parenthesis period

      However, if f is a function of spatial coordinates left-parenthesis bold x comma t right-parenthesis, where bold x equals bold-italic chi left-parenthesis bold upper X comma t right-parenthesis, calculating its material derivative requires the chain rule. In this context, several common notations for partial differentiation can be ambiguous. If we denote by partial-differential Subscript 1 and partial-differential Subscript 2 the operations of partial differentiation of f with respect to its first and second arguments bold x and t, respectively, then

StartLayout 1st Row 1st Column StartFraction upper D f Over upper D t EndFraction left-parenthesis bold x comma t right-parenthesis 2nd Column equals StartFraction partial-differential Over partial-differential t EndFraction f left-parenthesis bold-italic chi left-parenthesis bold upper X comma t right-parenthesis comma t right-parenthesis 2nd Row 1st Column Blank 2nd Column equals partial-differential Subscript 1 Baseline left-parenthesis bold-italic chi left-parenthesis bold upper X comma t right-parenthesis comma t right-parenthesis StartFraction partial-differential bold-italic chi Over partial-differential t EndFraction left-parenthesis bold upper X comma t right-parenthesis plus partial-differential Subscript 2 Baseline left-parenthesis bold-italic chi left-parenthesis bold upper X comma t right-parenthesis comma t right-parenthesis StartFraction partial-differential t Over partial-differential t EndFraction 3rd Row 1st Column Blank 2nd Column equals nabla f left-parenthesis bold x comma t right-parenthesis dot bold v left-parenthesis bold x comma t right-parenthesis plus StartFraction partial-differential Over partial-differential t EndFraction f left-parenthesis bold x comma t right-parenthesis period EndLayout nabla f equals sigma-summation Underscript i equals 1 Overscript 3 Endscripts StartFraction partial-differential f Over partial-differential x Subscript i Baseline EndFraction bold e Subscript i Baseline period

      In short, for a function f of spatial position and time, the material derivative is

StartLayout 1st Row StartFraction upper D f Over upper D t EndFraction equals StartFraction partial-differential f Over partial-differential t EndFraction plus bold v dot nabla f period EndLayout

Geometric representation of a time-independent region V having oriented boundary ∂V and 
				<p style= Скачать книгу