Скачать книгу

target="_blank" rel="nofollow" href="#n_35" type="note">[35]. Первый, «Дихотомия», аналогичен загадке стены, но гораздо печальнее. Он гласит, что вам не удастся даже сдвинуться с места, поскольку для того, чтобы сделать первый шаг, нужно сделать полшага, а перед этим – четверть шага и так далее. Так что вы не только не сможете добраться до стены, но даже не сможете начать движение.

      Это блестящий парадокс. Кто бы мог подумать, что для шага требуется выполнить бесконечно много подзадач? Хуже того, нет самой первой задачи, которую надо выполнить. Она не может состоять в том, что нужно сделать полшага, потому что до этого пришлось бы сделать четверть шага, а до того – восьмую часть шага и так далее. Если вы думаете, что у вас много дел перед завтраком, представьте, что вам нужно закончить бесконечное количество дел, прежде чем добраться до кухни.

      Другой парадокс, названный «Ахиллес и черепаха», утверждает, что быстрый бегун (Ахиллес) никогда не догонит медленного бегуна (черепаху), если у того будет фора.

      К тому времени, когда Ахиллес достигнет места, откуда отправилась в путь черепаха, она успеет немного продвинуться вперед. К тому моменту, когда Ахиллес достигнет этого нового места, черепаха снова продвинется, и так далее. Поскольку все мы считаем, что быстрый бегун может обогнать медленного, то либо наши чувства нас обманывают, либо что-то не так с нашими рассуждениями о движении, пространстве и времени.

      В этих первых двух парадоксах Зенон, похоже, возражал против принципиальной непрерывности пространства и времени, то есть против того, что их можно делить до бесконечности. Его умной стратегией было применение доказательства от противного (некоторые утверждают, что он его и изобрел), известное среди юристов и логиков как reductio ad absurdum (доведение до абсурда). В обоих парадоксах Зенон предположил непрерывность пространства и времени, а затем вывел из этого допущения противоречие, поэтому предположение о непрерывности должно быть ложным. Анализ основан именно на этом предположении, а потому ставки тут весьма высоки. Он опровергает Зенона, демонстрируя ошибки в его рассуждениях.

      Например, вот как анализ справляется с Ахиллесом и черепахой. Допустим, что черепаха стартует в 10 метрах перед Ахиллесом, а Ахиллес бежит вдесятеро быстрее своей соперницы – скажем, 10 метров в секунду против 1 метра в секунду. Таким образом, за 1 секунду Ахиллес отыгрывает 10-метровую фору черепахи. За это время черепаха продвинется на 1 метр. Чтобы покрыть это расстояние, Ахиллесу понадобится еще 0,1 секунды. За это время черепаха преодолеет еще 0,1 метра. Продолжая рассуждать в том же духе, мы видим, что последовательные отрезки времени, которые нужны Ахиллесу, чтобы покрыть разделяющее расстояние, складываются в бесконечный ряд:

      1 + 0,1 + 0,01 + 0,001 + … = 1,111… секунд.

      Если записать это число в виде обыкновенной дроби, получим 10/9 секунды. Именно столько времени понадобится быстроногому герою мифа, чтобы догнать черепаху. И хотя Зенон был прав в том, что Ахиллесу требуется выполнить бесконечное количество задач,

Скачать книгу