Скачать книгу

activity of fucoidan in anaplastic thyroid cancer via apoptosis and anti-angiogenesis. Mol. Med. Rep., 15, 5, 2620–2624, 2017.

      137. Chen, S., Zhao, Y., Zhang, Y., Zhang, D., Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One, 9, 9, e108157, 2014.

      138. Venkatesan, J., Anil, S., Kim, S.K., Shim, M.S., Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers (Basel), 8, 2, 30, 2016.

      139. Huang, Y.C. and Lam, U.I., Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J. Chin. Chem. Soc., 58, 6, 779–785, 2011.

      140. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C., Dilbaghi, N., Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym., 101, 1061–7, 2014.

      141. Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Singh, B., Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev., 35, 1, 47–66, 2014.

      142. Habiba, S.U., Shimasaki, K., Ahasan, M.M., Uddin, A.F.M.J., Effect of two bio polysaccharides on organogenesis of PLBs in Dendrobium kingianum cultured in vitro. Acta Hortic., 1167, 127– 132, 2017.

      143. Fliervoet, L.A.L., Engbersen, J.F.J., Schiffelers, R.M., Hennink, W.E., Vermonden, T., Polymers and hydrogels for local nucleic acid delivery. J. Mater. Chem. B, 6, 5651–5670, 2018.

      144. Raemdonck, K., Martens, T.F., Braeckmans, K., Demeester, J., De Smedt, S.C., Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev., 65, 9, 1123–47, 2013.

      145. Mizrahy, S. and Peer, D., Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 41, 2623–2640, 2012.

      146. Zhang, H., Ma, Y., Sun, X.L., Recent developments in carbohydrate-decorated targeted drug/ gene delivery. Med. Res. Rev., 30, 2, 270–289, 2010.

      147. Lesley, J., Hascall, V.C., Tammi, M., Hyman, R., Hyaluronan binding by cell surface CD44. J. Biol. Chem., 275, 35, 26967–75, 2000.

      148. Park, I.K., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S., Chowdhury, E.H., Akaike, T., Cho, C.S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J. Control. Release, 76, 3, 349–62, 2001.

      149. Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., Borchard, G., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23, 1, 153–9, 2002.

      150. Serrano-Sevilla, I., Artiga, Á., Mitchell, S.G., De Matteis, L., de la Fuente, J.M., Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules, 24, 14, 2570, 2019.

      152. Yin, T., Liu, J., Zhao, Z., Dong, L., Cai, H., Yin, L., Zhou, J., Huo, M., Smart nanoparticles with a detachable outer shell for maximized synergistic antitumor efficacy of therapeutics with varying physicochemical properties. J. Control. Release, 243, 54–68, 2016.

      153. Musgrave, C.S.A. and Fang, F., Contact lens materials: A materials science perspective. Materials (Basel), 12, 2, 261, 2019.

      154. Carvalho, I.M., Marques, C.S., Oliveira, R.S., Coelho, P.B., Costa, P.C., Ferreira, D.C., Sustained drug release by contact lenses for glaucoma treatment—A review. J. Control. Release, 202, 76–82, 2015.

      155. Xu, J., Xue, Y., Hu, G., Lin, T., Gou, J., Yin, T., He, H., Zhang, Y., Tang, X., A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release, 281, 97–118, 2018.

      156. Shi, X.Y. and Tan, T.W., New contact lens based on chitosan/gelatin composites. J. Bioact. Compat. Polym., 19, 6, 467–479, 2004.

      157. Maulvi, F.A., Soni, T.G., Shah, D.O., A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv., 23, 8, 3017–3026, 2016.

      158. Banerjee, S., Parasramka, M., Paruthy, S.B., Polysaccharides in cancer prevention: From bench to bedside, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

      159. Figueroa, F.L., Korbee, N., Abdala-Díaz, R., Álvarez-Gómez, F., Gómez-Pinchetti, J.L., Acién, F.G., Growing algal biomass using wastes, in: Bioassays: Advanced Methods and Applications, 2018.

      160. Casu, B., Structure and active domains of heparin, in: Chemistry and Biology of Heparin and Heparan Sulfate, 2005.

      161. Zhao, X. and Courtney, J.M., Surface modification of biomaterials by heparinisation to improve blood compatibility, in: Surface Modification of Biomaterials: Methods Analysis and Applications, 2011.

      162. Mishra, S., Upadhaya, K., Mishra, K.B., Shukla, A.K., Tripathi, R.P., Tiwari, V.K., Carbohydrate-Based Therapeutics: A Frontier in Drug Discovery and Development, in: Studies in Natural Products Chemistry, 2016.

      163. Liu, Z., Ji, S., Sheng, J., Wang, F., Pharmacological effects and clinical applications of ultra low molecular weight heparins. Drug Discov. Ther., 8, 1, 1–10, 2014.

      164. Mulloy, B., Hogwood, J., Gray, E., Lever, R., Page, C.P., Pharmacology of Heparin and Related Drugs. Pharmacol. Rev., 68, 1, 76–141, 2015.

      165. Dicker, K.T., Gurski, L.A., Pradhan-Bhatt, S., Witt, R.L., Farach-Carson, M.C., Jia, X., Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater., 10, 4, 1558–70, 2014.

      166. Monheit, G.D., Hyaluronic Acid Fillers: Hylaform and Captique. Facial Plast. Surg. Clin. North Am., 15, 1, 77–84, 2007.

      167. Bitterman-Deutsch, O., Kogan, L., Nasser, F., Delayed immune mediated adverse effects to hyaluronic acid fillers: Report of five cases and review of the literature. Dermatol. Reports, 7, 1, 5851, 2015.

      168. Gonçalves Maia Campos, P.M.B., De Melo, M.O., de Camargo Junior, F.B., Effects of polysaccharide-based formulations on human skin, in: Polysaccharides: Bioactivity and Biotechnology.

      169. Kanlayavattanakul, M. and Lourith, N., Biopolysaccharides for skin hydrating cosmetics, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

      171. Pitkänen, L., Heinonen, M., Mikkonen, K.S., Safety considerations of plant polysaccharides for food use: A case study on Phenolic-rich softwood galactoglucomannan extract. Food Funct., 9, 1931–1943, 2018.

      172. Sethy, K., Mishra, S.K., Mohanty, P.P., Agarawal, J., Meher, P., Satapathy, D., Sahoo, J.K., Panda, S., Nayak, S.M., An overview of Non Starch Polysaccharide. J. Anim. Nutr. Physiol., 1, 17–22, 2015.

      173. Arnling Bååth, J., Martínez-Abad, A., Berglund, J., Larsbrink, J., Vilaplana, F., Olsson, L., Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnol. Biofuels, 11, 114, 2018.

      174. Dourado, F., Leal, M., Martins, D., Fontão, A., Cristina Rodrigues, A., Gama, M., Celluloses as Food Ingredients/Additives: Is There a Room for BNC?, in: Bacterial Nanocellulose: From Biotechnology to Bio-Economy, 2016.

      175. Scheller, H.V. and Ulvskov, P., Hemicelluloses. Annu. Rev. Plant Biol., 61, 263–89, 2010.

      176. Berglund, J., Azhar, S., Lawoko, M., Lindström, M., Vilaplana, F., Wohlert, J., Henriksson, G., The structure of galactoglucomannan impacts the degradation under alkaline conditions. Cellulose, 26, 2155–2175, 2019.

      177. Bhattarai, M., Pitkänen,

Скачать книгу