Скачать книгу

gum is extracted from the seeds of the leguminous plant Cyamopsis tetragonolobus [171].

      Non-starch polysaccharides are carbohydrate fractions other than starch and free sugars. Non-starch polysaccharides include cellulose, hemicellulose, pectins and oligosaccharide. They are found both intra- and extra-cellularly, but the majority of non-starch polysaccharides present in the cell wall. Xylans, arabinoxylans (pentosans), β-glucan and cellulose are non-starch polysaccharides found in cereal grains while the stem and leaves include a small amount of pectic polysaccharides. The cotyledon of legumes also contains pectic polysaccharide [172]. Wood biomass which is used in pulping traditionally is the main source of cellulose [173]. However, woody tissue offers an attractive source also for food additives such as methylcellulose (E461) and hydroxypropyl methylcellulose (E464) which are used for film formation and barrier properties, binding and shape retention, and preventing boil-out and bursting at higher temperatures; hydroxypropyl cellulose (E463) which offers good surface activity exploited in the use of lower viscosity grades of toppings for whipping or dispensing from aerosol cans; methyl ethyl cellulose (E465) and sodium carboxymethyl cellulose E466 which are used to enhance viscosity [174]. Non-starch polysaccharides also include hemicelluloses that are miscellaneous non-cellulosic polysaccharides. Hemicelluloses are partially soluble in water and most often they found as heteropolymers and less commonly as homopolymers of monosaccharides [172]. Hemicelluloses include xyloglucans, xylans, mannans, glucomannans, and β-(1→3, 1→4)-glucans [175]. Hemicelluloses can be hydrolyzed into fermentable sugars, but they can also be used to fabricate high-value products such as prebiotics, food additives, films, gels, coatings, and biodegradable components in composite materials [171]. But still, the number of hemicellulose-based products is limited, mainly because of the degradation of hemicelluloses during traditionally important alkaline processes, such as kraft and soda pulping, for separation of the wood polymers and production of cellulose-based products [176]. Galactoglucomannan, also known as spruce gum, is water-soluble hemicellulose consisting of galactose, glucose, and mannose. Bhattarai et al. showed that galactoglucomannan behaves as an excellent emulsifier and stabilizer of oil-inwater emulsions [177]. However, it is not currently in the list of accepted food ingredients, since its safety has not been evaluated, yet [171]. In addition to galactoglucomannan, birch xylan is another hemicellulose as a promising food ingredient. Rosa-Sibakov et al. evaluated the potential of birch xylan as a food hydrocolloid and dietary fiber. It showed a slower fermentation rate by fecal microbiota compared to the reference compounds inulin, fructooligosaccharide and xylooligosaccharide. In addition, texture and stability of acid milk gels were improved with birch xylan addition compared to control (no hydrocolloids) or the references [178].

      In sum, natural polysaccharides are abundant renewable bioresources as food or food ingredients, but to be used as active food ingredients, the safety of polysaccharides has to be evaluated about their origin, purity, isolation method, stability, composition, immunogenicity, and toxicity. As mentioned above, the packaging is a demand for food preservation. Natural polysaccharides arise as suitable materials for biopackaging. However, polysaccharide-based systems have to be improved for commercial purposes to carry and release bioactive agents, such as antimicrobial, antioxidant agents. Packing systems relying on the “release on time” concept seems to be the future concept of the food industry. Therefore, polysaccharide-based biopackaging systems should be developed to respond to environmental changes such as changes in pH or temperature to liberate their bioactive agent contents.

Скачать книгу