Скачать книгу

      or 5.22%. When using the exact value of the potential energy for reference then the relative error is the same as the estimated relative error to within three digits of accuracy:

left-parenthesis e Subscript r Baseline right-parenthesis Subscript upper E Baseline equals StartRoot StartFraction pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis minus pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis Over double-vertical-bar u Subscript upper E upper X Baseline double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2 Baseline EndFraction EndRoot equals StartRoot StartFraction negative 1.41382648 plus 1.41768859 Over 1.41768859 EndFraction EndRoot equals 0.0522 period

      Exercise 1.20 Compare the estimated and exact values of the relative error in energy norm for the problem in Example 1.10 for upper M left-parenthesis normal upper Delta right-parenthesis equals 100, alpha equals 0.7.

      In Example 1.9 it was demonstrated that the QoI can be extracted from the finite element solution efficiently and accurately even when the discretization was very poorly chosen. Let us consider a quantity of interest normal upper Phi left-parenthesis u right-parenthesis and the corresponding extraction function w element-of upper E left-parenthesis upper I right-parenthesis. The extracted value of the QoI is

Graph depicts relative error in energy norm. M(Δ)=10,100,1000,10000, p=2.
,
.

Graph depicts relative error in energy norm. M(Δ)=10, p=2,3,4,5.
,
.

      and the exact value of the QoI is