Скачать книгу

      1.3.1.2. The IIC architecture

      The Industrial Internet Consortium is a consortium of several well-known industrial groups in the IT world, such as IBM, HUAWEI and Intel. Through the Industrial Internet Reference Architecture report, this consortium puts forth a system architecture that is applicable to the IoT. This three-tiered architecture is based on three vertical layers or three levels (see Figure 1.2) (Lin et al. 2015).

      The Edge Tier corresponds to all the nodes that collect data from proximity networks. This layer makes it possible to implement all control functions. Then comes the Platform Tier, which receives, processes and transmits control commands to the Edge Tier. This layer also enables the processing, analysis and running of operations on data collected from objects, before transmitting them in the opposite direction, toward the Enterprise Tier. The Enterprise Tier takes decisions and carries out the role of an interface with the end-user. It thus includes applications that allow control commands to be generated and to be sent to the Platform Tier. The different layers in this architecture are interconnected via access networks and service networks.

      Figure 1.2. Architecture of the Internet of Things (Lin et al. 2015). For a color version of this figure, see www.iste.co.uk/mbarek/service.zip

      1.3.2.1. E-health

      An aging population requires monitoring of old people through a decentralized healthcare system based on a set of connected sensors. Each patient possesses a surveillance system that allows them to be monitored and surveilled without the need of visiting the medical center. The medical data collected in this way improve healthcare by customizing treatments and creating an easier everyday life for patients. Thus, automated systems can perform a major part of a doctor’s work (tests, diagnosis, prescriptions, behavior modification) by collecting and analyzing patient data both passively and actively. As a result, a comprehensive and rich database becomes available and can alert doctors to any need that arises, while also providing them with a general overview of the patient’s health up to that point. This application field of the IoT has attracted the attention of several international organizations that have attempted to standardize the technologies used in order to effectively respond to the requirements of this field (International Electrotechnical Commission 2017). International organizations aim to promote the use of e-health technologies around the world. The World Health Organization (WHO) and the Program for Appropriate Technology in Health (PATH) have entered into a partnership to accelerate the development of digital health around the world (World Health Organization 2018). This field of application has attracted a large number of industrial organizations that try to offer different products that would be useful for e-health. Indeed, Ericsson and its partners offer portable prototypes for the field of e-health with long battery lives (Ericsson 2018).

      1.3.2.2. Smart cities

      1.3.2.3. Vehicular networks

      1.4.1. Motivations and challenges

      The security of information systems is made up of all technical, organizational, legal and human resources required to prevent the unauthorized use, misuse, modification or hijacking of the information system. At present, security is a major challenge in the information world and the goal of security in this context is to maintain the trust of the users and the consistency of the entire information system. Several norms have arisen around concepts related to security, for example the X800 recommendation by ITU-T (1991), which emphasizes the role played by different security services and their applicability.

      The IoT is characterized by an environment that is subject to constraints across several levels, which makes it difficult to adopt security mechanisms that were designed for conventional systems. An IoT environment includes objects with low memory

Скачать книгу