Скачать книгу

      Martínez, C., Zelmanov, E. (2010). Representation theory of Jordan superalgebras. I. Trans. Amer. Math. Soc., 362(2), 815–846.

      Martínez, C., Zelmanov, E. (2014). Irreducible representations of the exceptional Cheng-Kac superalgebra. Trans. Amer. Math. Soc., 366(11), 5853–5876.

      Martínez, C., Zelmanov, E.I. (2003). Lie superalgebras graded by P(n) and Q(n). Proc. Natl. Acad. Sci. USA, 100(14), 8130–8137.

      Medvedev, Y.A., Zelmanov, E.I. (1992). Some counterexamples in the theory of Jordan algebras. In Nonassociative Algebraic Models (Zaragoza, 1989). Nova Science Publishing, Commack, 1–16.

      Neveu, A., Schwarz, J. (1971). Factorizable dual model of pions. Nuclear Physics B, 31(1), 86–112.

      Racine, M.L., Zelmanov, E.I. (2003). Simple Jordan superalgebras with semisimple even part. J. Algebra, 270(2), 374–444.

      Racine, M.L., Zelmanov, E.I. (2015). An octonionic construction of the Kac superalgebra K10. Proc. Amer. Math. Soc., 143(3), 1075–1083.

      Ramond, P. (1971). Dual theory for free fermions. Phys. Rev. D, 3, 2415–2418.

      Schoutens, K. (1987). A nonlinear representation of the d = 2 SO(4) extended superconformal algebra. Phys. Lett., B194, 75–80.

      Schwimmer, A., Seiberg, N. (1987). Comments on the n = 2, 3, 4 superconformal algebras in two dimensions. Physics Letters B, 184(2), 191–196.

      Shestakov, I.P. (1997). Prime alternative superalgebras of arbitrary characteristic. Algebra i Logika. 36(6), 675–716, 722.

      Shtern, A.S. (1987). Representations of an exceptional Jordan superalgebra. Funktsional. Anal. i Prilozhen., 21(3), 93–94.

      Solarte, O.F., Shestakov, I. (2016). Irreductible representations of the simple Jordan superalgebra of Grassmann Poisson bracket. J. Algebra, 455, 29–313.

      Stern, A.S. (1995). Representations of finite-dimensional Jordan superalgebras of Poisson brackets. Comm. Algebra, 23(5), 1815–1823.

      Tits, J. (1962). Une classe d’algèbres de Lie en relation avec les algèbres de Jordan. Nederl. Akad. Wetensch. Proc., A 65, 24, 530–535.

      Tits, J. (1966). Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction. Nederl. Akad. Wetensch. Proc., A 69, 28, 223–237.

      Trushina, M. (2008). Modular representations of the Jordan superalgebras D(t) and K3. J. Algebra, 320(4), 1327–1343.

      Wall, C.T.C. (1963, 1964). Graded Brauer groups. J. Reine Angew. Math., 213, 187–199.

      Zelmanov, E. (2000). Semisimple finite dimensional Jordan superalgebras. In Combinatorial and Computational Algebra, Chan, K.Y., Mikhalev, A.A., Siu, M.-K., Yu, J.-T., Zelmanov, E. (eds). American Mathematical Society, Providence, 227–243.

      Zhevlakov, K.A., Slin’ko, A.M., Shestakov, I.P., Shirshov, A.I. (1982). Rings That are Nearly Associative (Translated by H.F. Smith). Academic Press, Inc., New York.

      2

      Composition Algebras

       Alberto ELDUQUE

       Department of Mathematics, University of Zaragoza, Spain

      Unital composition algebras are the analogues of the classical algebras of the real and complex numbers, quaternions and octonions, but the class of composition algebras have been recently enriched with new algebras, mainly the so-called symmetric composition algebras, which play an effective role in understanding the triality phenomenon in dimension 8. The goal of this chapter is to examine the main definitions and results of these algebras.

      Section 2.2 reviews the discovery of the real algebra of quaternions by Hamilton, surveys some of the applications of quaternions to deal with rotations in three- and four-dimensional euclidean spaces and then examines octonions, discovered shortly after Hamilton’s breakthrough.

      In section 2.4, symmetric composition algebras are defined. In dimension > 1, these are non-unital composition algebras, satisfying the extra condition of “associativity of the norm”: n(xy, z) = n(x, yz). The interest lies in dimension 8, where these algebras split into two disjoint families: para-Hurwitz algebras and Okubo algebras. The existence of the latter Okubo algebras justifies the introduction of the symmetric composition algebras.

      Formulas for triality are simpler if one uses symmetric composition algebras instead of the classical Hurwitz algebras. This is examined in section 2.5. Triality is a broad subject. In projective geometry, there is duality relating points and hyperplanes. Given a vector space of dimension 8, endowed with a quadratic form q with maximal Witt index, the quadric of isotropic vectors image in projective space ℙ(V) contains points, lines, planes and “solids”, and there are two kinds of “solids”. Geometric triality relates points and the two kinds of solids in a cyclic way. This goes back to Study (1913) and Cartan (1925). Tits (1959) showed that there are two different types of geometric trialities; one is related to octonions (or para-octonions) and the exceptional group G2, while the other is related to the classical groups of type A2, unless the characteristic is 3. The algebras hidden behind this second type are the Okubo algebras. From the algebraic point of view, triality relates the natural and spin representations of the spin group on an eight-dimensional quadratic space, that is the three irreducible representations corresponding to the outer vertices of the Dynkin diagram D4. Here, we will consider lightly the local version of triality, which gives a very symmetric construction of Freudenthal’s magic square.

      It is safe to say that the history of composition algebras starts with the discovery of the real quaternions by Hamilton.

      2.2.1. Quaternions

Скачать книгу