Скачать книгу

3rd Row upper C equals 140 normal upper K EndLayout"/>

      For mineral oils, it is very common to use Walter's relation:

      (2.19)log Subscript 10 Baseline log Subscript 10 Baseline left-parenthesis nu plus a right-parenthesis equals k minus m dot log Subscript 10 Baseline upper T

      where ν is the kinematic viscosity in mm2/s, T is the temperature in K, and k, m, and a are constants dependent on the specific hydraulic fluid. For mineral oils

Graph depicts the viscosity of hydraulic fluids as a function of the temperature.
ISO code υ40 ° C [mm2/s] υmin (−10%) [mm2/s] υmax (+10%) [mm2/s]
VG10 10 9.0 11.0
VG22 22 19.8 24.2
VG32 32 28.8 35.2
VG46 46 41.4 50.6
VG68 68 61.2 74.8
VG100 100 90.0 110.0

      As mentioned at the beginning of this chapter, an ideal hydraulic fluid maintains its properties constants, even under high temperature or pressure variations. However, as it is clearly visible from Figure 2.7, the large variations of fluid viscosity with temperature are far from the desirable ideal trend. This aspect has large implications in practical applications of hydraulic control technology. This is particularly true for machinery operating outdoor, which are affected by the seasonal or daily temperature changes. The viscosity of the working fluid in hot summer days can differ by orders of magnitude compared with the values reached in cold winter days. A designer needs to be mindful of this temperature dependence when selecting the proper fluid for the hydraulic system. Often the oil has to be changed with the season. For example, manufacturers can recommend a VG46 for summer use and a VG32 for the winter.

Graph depicts the qualitative representation of the viscosity index (VI).

      Source: OelCheck [21].

Oil type Viscosity index
Mineral oil 95–105
Multi‐grade oil 140–200
Synthetic oils 200–400

      2.6.2 Viscosity as a Function of Pressure

      For liquids, the viscosity increases with pressure. While this effect can be negligible for limited pressure variations (<200 bar), it might be relevant for hydraulic systems working at high pressure (>200 bar). A formula that can be used to approximate the variation of fluid viscosity with pressure is given by

Скачать книгу