ТОП просматриваемых книг сайта:
Na-ion Batteries. Laure Monconduit
Читать онлайн.Название Na-ion Batteries
Год выпуска 0
isbn 9781119818045
Автор произведения Laure Monconduit
Жанр Физика
Издательство John Wiley & Sons Limited
Vassilaras, P., Kwon, D.H., Dacek, S.T., Shi, T., Seo, D.H., Ceder, G., and Kim, J.C. (2017). Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. Journal of Materials Chemistry A, 5(9), 4596–4606.
Vassilaras, P., Ma, X.H., Li, X., and Ceder, G. (2013). Electrochemical properties of monoclinic NaNiO2. Journal of the Electrochemical Society, 160(2), A207–A211.
Vassilaras, P., Toumar, A.J., and Ceder, G. (2014). Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochemistry Communications, 38, 79–81.
Vinckeviciute, J., Radin, M.D., and Van Der Ven, A. (2016). Stacking-sequence changes and Na ordering in layered intercalation materials. Chemistry of Materials, 28(23), 8640–8650.
Wang, H., Liao, X.Z., Yang, Y., Yan, X.M., He, Y.S., and Ma, Z.F. (2016). Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of the Electrochemical Society, 163(3), A565–A570.
Wang, J., Zhou, Z.F., Li, Y.S., Li, M., Wang, F., Yao, Q.R., Wang, Z.M., Zhou, H.Y., and Deng, J.Q. (2019a). High-rate performance O3-NaNi0.4Mn0.4Cu0.1Ti0.1O2 as a cathode for sodium ion batteries. Journal of Alloys and Compounds, 792, 1054–1060.
Wang, L.G., Wang, J.J., Zhang, X.Y., Ren, Y., Zuo, P.J., Yin, G.P., and Wang, J. (2017a). Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy, 34, 215–223.
Wang, P.F., Yao, H.R., Liu, X.Y., Zhang, J.N., Gu, L., Yu, X.Q., Yin, Y.X., and Guo, Y.G. (2017b). Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Advanced Materials, 29(19).
Wang, Q., Mariyappan, S., Vergnet, J., Abakumov, A. M., Rousse, G., Rabuel, F., and Tarascon, J. M. (2019). Reaching the Energy Density Limit of Layered O3-NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution. Advanced Energy Materials, 9(36), 1901785.
Wang, X.F., Liu, G.D., Iwao, T., Okubo, M., and Yamada, A. (2014). Role of ligand-to-metal charge transfer in O3-type NaFeO2-NaNiO2 solid solution for enhanced electrochemical properties. Journal of Physical Chemistry C, 118(6), 2970–2976.
Wang, X.F., Tamaru, M., Okubo, M., and Yamada, A. (2013). Electrode properties of P2-Na2/3MnyCo1-yO2 as cathode materials for sodium-ion batteries. Journal of Physical Chemistry C, 117(30), 15545–15551.
Wang, Y., Li, W., Hu, G.R., Peng, Z.D., Cao, Y.B., Gao, H.C., Du, K., and Goodenough, J.B. (2019c). Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chemistry of Materials, 31(14), 5214–5223.
Wang, Y., Xiao, R., Hu, Y.S., Avdeev, M., and Chen, L. (2015). P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat.
Commun., 6, 7954.
Watanabe, E., Zhao, W.W., Sugahara, A., De Boisse, B.M., Lander, L., Asakura, D., Okamoto, Y., Mizokawa, T., Okubo, M., and Yamada, A. (2019). Redox-driven spin transition in a layered battery cathode material. Chemistry of Materials, 31(7), 2358–2365.
Wu, D., Li, X., Xu, B., Twu, N., Liu, L., and Ceder, G. (2015). NaTiO2: A layered anode material for sodium-ion batteries. Energy & Environmental Science, 8(1), 195–202.
Xia, X. and Dahn, J.R. (2012). NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid State Letters, 15(1), A1–A4.
Xie, Y., Wang, H., Xu, G., Wang, J., Sheng, H., Chen, Z., Ren, Y., Sun, C.-J., Wen, J., Wang, J., Miller, D.J., Lu, J., Amine, K., and Ma, Z.-F. (2016). In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical
sodium-ion intercalation. Advanced Energy Materials, 6(24), 1601306.
Xu, J., Lee, D.H., and Meng, Y.S. (2013). Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Functional Materials Letters, 6(1), 1330001.
Yabuuchi, N., Ikeuchi, I., Kubota, K., and Komaba, S. (2016). Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. Acs Applied Materials & Interfaces, 8(47), 32292–32299.
Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S. (2012a). P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 11(6), 512–517.
Yabuuchi, N., Yoshida, H., and Komaba, S. (2012b). Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry, 80(10), 716–719.
Yabuuchi, N., Hara, R., Kajiyama, M., Kubota, K., Ishigaki, T., Hoshikawa, A., and Komaba, S. (2014). New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries. Advanced Energy Materials, 4(13), 1301453.
Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S. (2014). Research development on sodium-ion batteries. Chemical Reviews, 114(23), 11636–11682.
Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., and Komaba, S. (2013). Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. Journal of The Electrochemical Society, 160(5), A3131–A3137.
Yao, H.R., Wang, P.F., Gong, Y., Zhang, J.N., Yu, X.Q., Gu, L., Ouyang, C.Y., Yin, Y.X., Hu, E.Y., Yang, X.Q., Stavitski, E., Guo, Y.G., and Wan, L.J. (2017). Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 139(25), 8440–8443.
Yoshida, H., Yabuuchi, N., and Komaba, S. (2013). NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochemistry Communications, 34, 60–63.
Yoshida, H., Yabuuchi, N., Kubota, K., Ikeuchi, I., Garsuch, A., Schulz-Dobrick, M., and Komaba, S. (2014). P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 50(28), 3677–3680.
You, Y., Dolocan, A., Li, W.D., and Manthiram, A. (2019). Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Letters, 19(1), 182–188.
Yu, C.-Y., Park, J.-S., Jung, H.-G., Chung, K.-Y., Aurbach, D., Sun, Y.-K., and Myung, S.-T. (2015). NaCrO2 cathode for high-rate sodium-ion batteries. Energy & Environmental Science, 8(7), 2019–2026.
Yue, J.L., Yin, W.W., Cao, M.H., Zulipiya, S., Zhou, Y.N., and Fu, Z.W. (2015). A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chemical Communications, 51(86), 15712–15715.
Zandbergen, H. W., Foo, M., Xu, Q., Kumar, V., and Cava, R. J. (2004). Sodium ion ordering in NaxCoO2: Electron diffraction study. Physical Review B, 70(2), 024101.
Zhang, B., Dugas, R., Rousse, G., Rozier, P., Abakumov, A. M., and Tarascon, J. M. (2016). Insertion compounds and composites made by ball milling for