Скачать книгу

обрести разум. Считаете ли вы, что это важная задача? Ведь, возможно, разум рождается в процессе обучения?

      И. Б.: Я уверен, что он возникает именно как результат обучения. Разум не может появиться только потому, что кто-то положил вам в голову какие-то знания. По крайней мере, у людей так.

      М. Ф.: Глубокое обучение – основной путь к созданию сильного ИИ или потребуются гибридные системы?

      И. Б.: Изначально ИИ был условным понятием, ни о каком обучении речи не шло. В центре внимания была способность машины делать последовательные выводы и объединять фрагменты информации. А глубокое обучение нейронных сетей можно назвать познанием снизу вверх. Все начинается с восприятия, в котором мы закрепляем понимание мира машиной. Затем можно строить распределенные представления и фиксировать связи между множеством переменных.

      Отношения между такими переменными мы с братом изучали в 1999 г., что дало толчок к появлению в области естественного языка таких подходов, как векторное представление слов или распределенные представления слов и предложений. В них слово описывается характером активности в мозге или набором чисел. Слова со сходными значениями связываются со сходными числовыми комбинациями.

      В настоящее время на базе этих подходов пытаются решать классические проблемы ИИ, связанные с умением рассуждать и понимать, программировать и планировать. «Строительные блоки», обнаруженные при изучении восприятия, сейчас пробуют распространять на когнитивные задачи более высокого уровня (психологи называют это действиями Системы 2). Я полагаю, именно таким способом мы будем двигаться к сильному ИИ. Это нельзя назвать гибридной системой; скорее, мы пытаемся работать над классическим ИИ, используя как строительный материал концепции из глубокого обучения. Можно сказать, что требуются альтернативные пути достижения цели.

      М. Ф.: То есть вы считаете, что все сведется к нейронным сетям с различными архитектурами?

      И. Б.: Да. Ведь человеческий мозг состоит из нейронных сетей. Нужно придумать архитектуры и обучающие техники, позволяющие решать задачи, поставленные перед классическим ИИ.

      М. Ф.: Обучения и тренировки будет достаточно или потребуется какая-то дополнительная структура?

      И. Б.: Она уже существует, просто отличается от привычной структуры представления знаний, которую мы наблюдаем в энциклопедиях или формулах. Она имеет архитектуру нейронной сети и довольно широкие допущения по поводу окружающего мира и вершины собственных возможностей. Чтобы реализовывать в нейронной сети механизм внимания, такая структура требует большого количества предварительных знаний. Оказывается, данные имеют решающее значение для таких вещей, как машинный перевод.

      Уже существует множество предположений в разных предметных областях о мире и о внедряемой функции, которые в виде архитектур и целей содержались в технологии глубокого обучения. Именно этому посвящено большинство современных научных работ.

      М. Ф.: Говорят,

Скачать книгу