Скачать книгу

syngas: ceramic membrane technology for lower cost conversion of natural gas. In 10th Topical Conference on Gas Utilization 2010 – Topical Conference at the 2010 AIChE Spring Meeting and 6th Global Congress on Process Safety, San Antonio, TX (21–25 March 2010). AIChE (pp. 48–59).

      58 58 Anderson, L.L., Armstrong, P.A., Broekhuis, R.R. et al. (2016). Solid State Ionics 288: 331–337.

      59 59 Rosen, L., Degenstein, N., Shah, M. et al. (2011). 10th International Conference on Greenhouse Gas Control Technologies, vol. 4 (eds. J. Gale, C. Hendriks and W. Turkenberg), 750–755, ISSN 1876‐6102.

      60 60 Kromer, B.R., Litwin, M.M., and Kelly, S.M. (2014). Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream. US Patent 7,856,829. US20140183866 A1, filed 23 December 2013 and issued 27 September 2016.

      61 61 Shah, M.M., Jamal, A., Dmevich, R.F., et al. (2012). Electrical power generation apparatus. US Patent 8,196,387, filed 17 November 2010 and issued 12 June 2012.

      62 62 Kneer, R., Toporov, D., Förster, M. et al. (2010). Energy Environ. Sci. 3 (2): 198–207.

      63 63 Gutiérrez‐Guerra, N., Valverde, J.L., Romero, A. et al. (2017). Electrochem. Commun. 81: 128–131.

      64 64 Pfaff, E.M., Kaletsch, A., and Broeckmann, C. (2012). Chem. Eng. Technol. 35 (3): 455–463.

      65 65 Middelkoop, V. and Michielsen, B. (2015). Oxy fuel combustion power production using high temperature O2 membranes. In: Process Intensification for Sustainable Energy Conversion (eds. F. Gallucci and M.V.S. Annaland), 321–385. Wiley.

      66 66 Gröger, O., Gasteiger, H.A., and Suchsland, J.‐P. (2015). J. Electrochem. Soc. 162 (14): A2605–A2622.

      67 67 Büchi, F.N., Hofer, M., Peter, C. et al. (2014). RSC Adv. 4 (99): 56139–56146.

      68 68 Lewandowska‐Bernat, A. and Desideri, U. (2017). Energy Procedia 105: 4569–4574.

      69 69 Götz, M., Lefebvre, J., Mörs, F. et al. (2016). Renewable Energy 85: 1371–1390.

      70 70 Kluiters, S.C.A. (2004). Status Review on Membrane Systems for Hydrogen Separation. Intermediate Report EU project MIGREYD NNE5‐2001. p. 670.

      71 71 Al‐Mufachi, N.A., Rees, N.V., and Steinberger‐Wilkens, R. (2015). Renewable Sustainable Energy Rev. 47: 540–551.

      72 72 Escolástico, S., Schroeder, M., and Serra, J.M. (2014). J. Mater. Chem. A 2 (18): 6616–6630.

      73 73 Escolástico, S., Solís, C., Scherb, T. et al. (2013). J. Membr. Sci. 444: 276–284.

      74 74 Haugsrud, R. and Kjølseth, C. (2008). J. Phys. Chem. Solids 69 (7): 1758–1765.

      75 75 Haugsrud, R. and Norby, T. (2006). Nat. Mater. 5 (3): 193–196.

      76 76 Magrasó, A. and Haugsrud, R. (2014). J. Mater. Chem. A 2 (32): 12630–12641.

      77 77 Serra, J.M. (2019). Nat. Energy 4 (3): 178–179.

      78 78 Meulenberg, W.A., Ivanova, M.E., Serra, J.M., and Roitsch, S. (2011). Chapter 17: Proton‐conducting ceramic membranes for solid oxide fuel cells and hydrogen (H2) processing. In: Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (eds. A. Basile and S.P. Nunes), 541–567. Woodhead Publishing.

      79 79 Bareiß, K., de la Rua, C., Möckl, M., and Hamacher, T. (2019). Appl. Energy 237: 862–872.

      80 80 Kreuer, K.D. (2003). Annu. Rev. Mater. Res. 33 (1): 333–359.

      81 81 de Grotthuss, C. (1806). Philos. Mag. 25: 330–339.

      82 82 Marx, D. (2006). ChemPhysChem 7 (9): 1848–1870.

      83 83 Kreuer, K.‐D. (1996). Chem. Mater. 8 (3): 610–641.

      84 84 Ricote, S., Bonanos, N., Manerbino, A., and Coors, W.G. (2012). Int. J. Hydrogen Energy 37 (9): 7954–7961.

      85 85 Ricote, S., Bonanos, N., Marco de Lucas, M.C., and Caboche, G. (2009). J. Power Sources 193 (1): 189–193.

      86 86 Yang, L., Wang, S., Blinn, K. et al. (2009). Science 326 (5949): 126.

      87 87 Choi, S., Kucharczyk, C.J., Liang, Y. et al. (2018). Nat. Energy 3 (3): 202–210.

      88 88 Escolástico, S., Somacescu, S., and Serra, J.M. (2014). Chem. Mater. 26 (2): 982–992.

      89 89 Escolástico, S., Somacescu, S., and Serra, J.M. (2015). J. Mater. Chem. A 3 (2): 719–731.

      90 90 Escolástico, S., Solis, C., Kjolseth, C., and Serra, J.M. (2014). Energy Environ. Sci. 7 (11): 3736–3746.

      91 91 Ivanova, M.E., Escolástico, S., Balaguer, M. et al. (2016). Sci. Rep. 6: 34773.

      92 92 Mortalò, C., Rebollo, E., Escolástico, S. et al. (2018). J. Membr. Sci. 564: 123–132.

      93 93 Rebollo, E., Mortalo, C., Escolástico, S. et al. (2015). Energy Environ. Sci. 8 (12): 3675–3686.

      94 94 Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A. (2016). Catal. Rev. 58 (1): 1–35.

      95 95 Chang, H.‐F., Pai, W.‐J., Chen, Y.‐J., and Lin, W.‐H. (2010). Int. J. Hydrogen Energy 35 (23): 12986–12992.

      96 96 Iulianelli, A., Ribeirinha, P., Mendes, A., and Basile, A. (2014). Renewable Sustainable Energy Rev. 29: 355–368.

      97 97 Li, J., Yoon, H., Oh, T.‐K., and Wachsman, E.D. (2009). Appl. Catal., B 92 (3–4): 234–239.

      98 98 Li, J., Yoon, H., Oh, T.‐K., and Wachsman, E.D. (2012). Int. J. Hydrogen Energy 37 (21): 16006–16012.

      99 99 Liu, Z., Li, L., and Iglesia, E. Catal. Lett. 82 (3): 175–180.

      100 100 Xue, J., Chen, Y., Wei, Y. et al. (2016). ACS Catal. 6 (4): 2448–2451.

      101 101 Wender, I. (1996). Fuel Process. Technol. 48 (3): 189–297.

      102 102 Graves, C., Ebbesen, S.D., Mogensen, M., and Lackner, K.S. (2011). Renewable Sustainable Energy Rev. 15 (1): 1–23.

      103 103 Millet, P. and Grigoriev, S. (2013). Chapter 2: Water electrolysis technologies. In: Renewable Hydrogen Technologies (eds. L.M. Gandía, G. Arzamendi and P.M. Diéguez), 19–41. Amsterdam: Elsevier.

      104 104 Laguna‐Bercero, M.A. (2012). J. Power Sources 203: 4–16.

      105 105 Sakai, T., Arakawa, K., Ogushi, M. et al. (2015). J. Solid State Electrochem. 19 (6): 1793–1798.

      106 106 Vøllestad, E., Strandbakke, R., Tarach, M. et al. (2019). Nat. Mater. 18 (7): 752–759.

      107 107 Kortlever, R., Shen, J., Schouten, K.J.P. et al. (2015). J. Phys. Chem. Lett. 6 (20): 4073–4082.

      108 108 Minh, N.Q. and Takahashi, T. (1995). Science and Technology of Ceramic Fuel Cells. Elsevier Science.

      109 109 Ruiz‐Trejo, E. and Irvine, J.T.S. (2013). Solid State Ionics 252: 157–164.

      110 110 Ruiz‐Trejo, E. and Irvine, J.T.S. (2012). Solid State Ionics 216: 36–40.

      111 111 Bausá, N., Escolástico, S., and Serra, J.M. (2019). J. CO2 Util. 34: 231–238.

      112 112 Speight, J.G. (2019). Chapter 3: Unconventional gas. In: Natural Gas, 2e (ed. J.G. Speight), 59–98. Boston, MA: Gulf Professional Publishing.

      113 113 Rostrup‐Nielsen, J.R. (2000). Catal. Today 63 (2): 159–164.

      114 114 Dalai, A.K. and Davis, B.H. (2008). Appl. Catal., A 348 (1): 1–15.

      115 115 Wang, L., Chen, M., Küngas, R. et al. (2019). Renewable Sustainable Energy Rev. 110: 174–187.

      116 116 Choi, M., Na, K., Kim, J. et al. (2009). Nature 461: 246.

      117 117 Stöcker, M. (1999). Microporous Mesoporous Mater. 29 (1–2): 3–48.

      118 118 Franke, R., Selent, D., and Börner, A. (2012). Chem. Rev. 112 (11): 5675–5732.

      119 119 Beller, M. (2006). Catalytic Carbonylation Reactions. Springer.

      120 120 Haworth, P.F., Smart, S., Serra, J.M., and Diniz da

Скачать книгу