Скачать книгу

operations, the DNA designs should have specific GC content with unique (noncomplementary) nucleotide sequence and should lead to a specific structure (i.e. hairpin or linear formation). These requirements reduce the designing flexibility and therefore restrict the application to bigger size formulations. Moreover, real‐world problems often involve continuous search spaces with multiple optimal solutions. For such problems, the existing DNA computing procedures that are originally developed for solving the combinatorial problems involving the discrete search space need to be modified.

      In conclusion, DNA computing shows great potential and has many advantages in the field of computing and data storage over conventional computing, primarily due to its ability to perform millions of calculations simultaneously using molecules. Despite this, the DNA computer is far from matching the reliability of conventional silicon‐based computer owing to several challenges such as poor scaling and limited ability to handle real‐world problems. The comparative analysis of existing DNA computing and data storage models illustrated their pros and cons, which is opening up new directions in materials science and biomedical applications.

      This chapter is a part of the PhD thesis titled “Computing using Biomolecules” of Mr. Deepak Sharma, which is under consideration for the award of PhD degree at Indian Institute of Technology Delhi, India.

      1 1 Moore, G.E. (1975) Progress in digital integrated circuits. Electron Devices Meeting, 11–13.

      2 2 Adleman, L.M. (1994). Molecular computation of solutions to combinatorial problems. Science266 (5187): 1021–1024.

      3 3 Lipton, R.J. (1995). DNA solution for hard computational problems. Science268 (5210): 542–545.

      4 4 Smith, L.M., Corn, R.M., Condon, A.E. et al. (1998). A surface‐based approach to DNA computation. J Comput Biol5 (2): 255–267.

      5 5 Sakamoto, K., Gouzu, H., Komiya, K. et al. (2000). Molecular computation by DNA hairpin formation. Science288 (5469): 1223–1226.

      6 6 Liu, Q., Wang, L., Frutos, A.G. et al. (2000). DNA computing on surfaces. Nature403 (6766): 175–179.

      7 7 Braich, R.S., Chelyapov, N., Johnson, C. et al. (2002). Solution of a 20‐variable 3‐SAT problem on a DNA computer. Science296 (5567): 499–502.

      8 8 Kahan, M., Gil, B., Adar, R., and Shapiro, E. (2008). Towards molecular computers that operate in a biological environment. Physica D237 (9): 1165–1172.

      9 9 Bell, S.A., McLean, M.E., Oh, S.K. et al. (2003). Synthesis and characterization of covalently linked single‐stranded DNA oligonucleotide‐dendron conjugates. Bioconjug Chem14 (2): 488–493.

      10 10 Shagin, D.A., Shagina, I.A., Zaretsky, A.R. et al. (2017). A high‐throughput assay for quantitative measurement of PCR errors. Sci Rep7 (1): 1–11.

      11 11 Ouyang, Q., Kaplan, P.D., Liu, S., and Libchaber, A. (1997). DNA solution of the maximal clique problem. Science278 (5337): 446–449.

      12 12 Faulhammer, D., Cukras, A.R., Lipton, R.J., and Landweber, L.F. (2000). Molecular computation: RNA solutions to chess problems. Proc Natl Acad Sci97 (4): 1385–1389.

      13 13 Chao, J., Wang, J., Wang, F. et al. (2019). Solving mazes with single‐molecule DNA navigators. Nat Mater18 (3): 273–279.

      14 14 Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440 (7082): 297–302.

      15 15 Krishnan, Y. and Simmel, F.C. (2011). Nucleic acid based molecular devices. Angew Chem Int Ed50 (14): 3124–3156.

      16 16 Yurke, B., Turber, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature406: 605–608.

      17 17 He, Y. and Liu, D.R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol5 (11): 778–782.

      18 18 Funke, J.J. and Dietz, H. (2016). Placing molecules with Bohr radius resolution using DNA origami. Nat Nanotechnol11 (1): 47–52.

      19 19 Hariadi, R.F., Appukutty, A.J., and Sivaramakrishnan, S. (2016). Engineering circular gliding of actin filaments along myosin‐patterned DNA nanotube rings to study long‐term actin‐myosin behaviors. ACS Nano10 (9): 8281–8288.

      20 20 Douglas, S.M., Chou, J.J., and Shih, W.M. (2007). DNA‐nanotube‐induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci U S A104 (16): 6644–6648.

      21 21 Martin, T.G., Bharat, T.A.M., Joerger, A.C. et al. (2016). Design of a molecular support for cryo‐EM structure determination. Proc Natl Acad Sci U S A113 (47): E7456–E7463.

      22 22 Shrestha, P., Jonchhe, S., Emura, T. et al. (2017). Confined space facilitates G‐quadruplex formation. Nat Nanotechnol12 (6): 582–588.

      23 23 Kilchherr, F., Wachauf, C., Pelz, B. et al. (2016). Single‐molecule dissection of stacking forces in DNA. Science353 (6304): aaf5508.

      24 24 Venkatesan, B.M. and Bashir, R. (2011). Nanopore sensors for nucleic acid analysis. Nat Nanotechnol6 (10): 615–624.

      25 25 Bell, N.A.W., Keyser, U.F., Puchner, E.M. et al. (2014). Nanopores formed by DNA origami: a review. Fed Eur Biochem Soc588: 3564–3570.

      26 26 Krishnan, S., Ziegler, D., Arnaut, V. et al. (2016). Molecular transport through large‐diameter DNA nanopores. Nat Commun7: 1–7.

      27 27 Ouyang, X., Li, J., Liu, H. et al. (2013). Rolling circle amplification‐based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small9 (18): 3082–3087.

      28 28 Ora, A., Järvihaavisto, E., Zhang, H. et al. (2016). Cellular delivery of enzyme‐loaded DNA origami. Chem Commun52 (98): 14161–14164.

      29 29 Endo, M. and Sugiyama, H. (2014). Single‐molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high‐speed atomic force microscopy. Acc Chem Res47 (6): 1645–1653.

      30 30 Rajendran, A., Endo, M., and Sugiyama, H. (2012). Single‐molecule analysis using DNA origami. Angew Chem Int Ed51 (4): 874–890.

      31 31 Wang, D., Fu, Y., Yan, J. et al. (2014). Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. Anal Chem86 (4): 1932–1936.

      32 32 Linko, V., Nummelin, S., Aarnos, L. et al. (2016). DNA‐based enzyme reactors and systems. Nanomaterials6 (8): 139.

      33 33 Fu, J., Liu, M., Liu, Y., and Yan, H. (2012). Spatially‐interactive biomolecular networks organized by nucleic acid nanostructures. Acc Chem Res45 (8): 1215–1226.

      34 34 Church, G.M., Gao, Y., and Kosuri, S. (2012). Next‐generation digital information storage in DNA. Science337 (6102): 1628–1628.

      35 35 Goldman, N., Bertone, P., Chen, S. et al. (2013). Toward practical high‐capacity low‐maintenance storage of digital information in synthesised DNA. Nature494 (7435): 77–80.

      36 36 Blawat, M., Gaedke, K., Hütter, I. et al. (2016). Forward error correction for DNA data storage. Procedia Comput Sci80: 1011–1022.

      37 37 Erlich, Y. and Zielinski, D. (2017). DNA fountain enables a robust and efficient storage architecture. Science355 (6328): 950–954.

      38 38 Organick, L., Ang, S.D., Chen, Y.‐J. et al., and others (2018). Random access in large‐scale DNA data storage. Nat Biotechnol36 (3): 242.

      39 39 Takahashi, C.N., Nguyen, B.H., Strauss, K., and Ceze, L. (2019). Demonstration of end‐to‐end automation of DNA data storage. Sci Rep9 (1): 1–5.

       Chuan Zhang1,2

       1National Mobile Communications Research Laboratory, Southeast University, Nanjing, 211189, China

      

Скачать книгу