ТОП просматриваемых книг сайта:
Biopolymers for Biomedical and Biotechnological Applications. Группа авторов
Читать онлайн.Название Biopolymers for Biomedical and Biotechnological Applications
Год выпуска 0
isbn 9783527818303
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
186 186 Kumar, D., Kaštánek, P., and Adhikary, S.P. (2018). Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Current Science 115 (2): 9.
187 187 Phélippé, M., Gonçalves, O., Thouand, G. et al. (2019). Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Research 38: 101426.
188 188 Sun, L., Wang, L., and Zhou, Y. (2012). Immunomodulation and antitumor activities of different‐molecular‐weight polysaccharides from Porphyridium cruentum. Carbohydrate Polymers 87 (2): 1206–1210.
189 189 Xiao, R. and Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances 34 (7): 1225–1244.
190 190 Liu, L., Pohnert, G., and Wei, D. (2016). Extracellular metabolites from industrial microalgae and their biotechnological potential. Marine Drugs 14 (10): 191.
191 191 Raposo, M.F.J., Morais, A.M.M.B., and Morais, R.M.S.C. (2014). Bioactivity and applications of polysaccharides from marine microalgae. In: Polysaccharides (eds. K.G. Ramawat and J.‐M. Mérillon), 1–38. Springer International Publishing.
192 192 Amaro, H.M., Guedes, A.C., and Malcata, F.X. (2011). Antimicrobial activities of microalgae: an invited review. In: Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, vol. 3 (ed. A. Méndez‐Vilas), 1272–1284. Formatex Research Center.
193 193 Talyshinsky, M.M., Souprun, Y.Y., and Huleihel, M.M. (2002). Anti‐viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell International 2: 8.
194 194 Li, J., Shen, B., Nie, S., and Chen, K. (2019). Marine microbial polysaccharides: promising immunomodulatory and anticancer potential. In: Marine Polysaccharides: Advances and Multifaceted Applications (eds. S. Ahmed and A. Soundararajan), 13–28. Pan Stanford Publishing Pte. Ltd.
195 195 Khan, T., Date, A., Chawda, H., and Patel, K. (2019). Polysaccharides as potential anticancer agents – a review of their progress. Carbohydrate Polymers 210: 412–428.
196 196 Morais, M.G., Stillings, C., Dersch, R. et al. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresource Technology 101 (8): 2872–2876.
197 197 Wijesekara, I., Pangestuti, R., and Kim, S.‐K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84 (1): 14–21.
198 198 Ngo, D.‐H. and Kim, S.‐K. (2013). Sulfated polysaccharides as bioactive agents from marine algae. International Journal of Biological Macromolecules 62: 70–75.
199 199 Deng, R. and Chow, T.‐J. (2010). Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina: hypolipidemic, antioxidant, and antiinflammatory activities of microalgae spirulina. Cardiovascular Therapeutics 28 (4): 33–45.
200 200 Pangestuti, R. and Kim, S.‐K. (2011). Neuroprotective effects of marine algae. Marine Drugs 9 (5): 803–818.
201 201 Guzmán‐Murillo, M.A. and Ascencio, F. (2000). Anti‐adhesive activity of sulfated exopolysaccharides of microalgae on attachment of red sore disease‐associated bacteria and Helicobacter pylori to tissue culture cells. Letters in Applied Microbiology 30 (6): 473–478.
202 202 Arad, S.M. and Atar, D. (2007). Viscosupplementation with algal polysaccharides in the treatment of arthritis. WIPO patent WO/2007/066340, filed 07 December 2006 and issued 14 June 2007.
203 203 Borowitzka, M.A. (2013). High‐value products from microalgae – their development and commercialization. Journal of Applied Phycology 25 (3): 743–756.
204 204 Ariede, M.B., Candido, T.M., Jacome, A.L.M. et al. (2017). Cosmetic attributes of algae – a review. Algal Research 25: 483–487.
205 205 Bayona, K.C.D. (2012). Activity of sulfated polysaccharides from microalgae Porphyridium cruentum over degenerative mechanisms of the skin. International Journal of Science and Advanced Technology 2 (8): 85–92.
206 206 Croisier, F. and Jérôme, C. (2013). Chitosan‐based biomaterials for tissue engineering. European Polymer Journal 49: 780–792.
207 207 Synowiecki, J. and Al‐Khateeb, N.A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition 43 (2): 145–171.
208 208 Arroyo, J., Farkaš, V., Sanz, A.B., and Cabib, E. (2016). Strengthening the fungal cell wall through chitin–glucan cross‐links: effects on morphogenesis and cell integrity. Cellular Microbiology 18 (9): 1239–1250.
209 209 Gow, N.A.R., Latge, J.‐P., and Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum 5 (3) https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.
210 210 Kapaun, E. and Reisser, W. (1995). A chitin‐like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta 197: 577–582.
211 211 Ogawa, Y., Kimura, S., Wada, M., and Kuga, S. (2010). Crystal analysis and high‐resolution imaging of microfibrillar α‐chitin from Phaeocystis. Journal of Structural Biology 171: 111–116.
212 212 Ozkan, A. and Rorrer, G.L. (2017). Effects of light intensity on the selectivity of lipid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp. Algal Research 25: 216–227.
213 213 Kang, X., Kirui, A., Muszyński, A. et al. (2018). Molecular architecture of fungal cell walls revealed by solid‐state NMR. Nature Communications 9: 2747.
214 214 Abdel‐Gawad, K.M., Hifney, A.F., Fawzy, M.A., and Gomaa, M. (2017). Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocolloids 63: 593–601.
215 215 Muñoz, G., Valencia, C., Valderruten, N. et al. (2015). Extraction of chitosan from Aspergillus niger mycelium and synthesis of hydrogels for controlled release of betahistine. Reactive and Functional Polymers 91–92: 1–10.
216 216 Pochanavanich, P. and Suntornsuk, W. (2002). Fungal chitosan production and its characterization. Letters in Applied Microbiology 35: 17–21.
217 217 Wu, T., Zivanovic, S., Draughon, F.A. et al. (2005). Physicochemical properties and bioactivity of fungal chitin and chitosan. Journal of Agricultural and Food Chemistry 53: 3888–3894.
218 218 Álvarez, S.P.O., Cadavid, D.A.R., Sierra, D.M.E. et al. (2014). Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Research International 2014: 169071.
219 219 Singh, A. and Dutta, P.K. (2017). Extraction of chitin‐glucan complex from Agaricus bisporus: characterization and antibacterial activity. Journal of Polymer Materials 34 (1): 1–9.
220 220 Smirnou, D., Krcmar, M., and Prochazkova, E. (2011). Chitin‐glucan complex production by Schizophyllum commune submerged cultivation. Polish Journal of Microbiology 60 (3): 223–228.
221 221 Wu, T., Zivanovic, S., Draughon, F.A., and Sams, C.E. (2004). Chitin and chitosans – value‐added products from mushroom waste. Journal of Agricultural and Food Chemistry 52: 7905–7910.
222 222 Farinha, I., Duarte, P., Pimentel, A. et al. (2015). Chitin–glucan complex production by Komagataella pastoris: downstream optimization and product characterization. Carbohydrate Polymers 130: 455–464.
223 223 Holan, Z., Pokorný, V., Beran, K. et al. (1981). The glucan‐chitin complex in Saccharomyces cerevisiae. Archives of Microbiology 130: 312–318.
224 224 Sun, C., Fu, D., Jin, L. et al. (2018). Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers 199: 341–352.
225 225 Liu, D., Ding, L., Sun, J. et al. (2016). Yeast cell disruption strategies for recovery of intracellular