ТОП просматриваемых книг сайта:
Biopolymers for Biomedical and Biotechnological Applications. Группа авторов
Читать онлайн.Название Biopolymers for Biomedical and Biotechnological Applications
Год выпуска 0
isbn 9783527818303
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
65 65 Ge, H., Xia, L., Zhou, X. et al. (2014). Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. Journal of Microbiology 52 (2): 179–183.
66 66 Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., and Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Research International 2015: 1–10.
67 67 Kanekiyo, K., Hayashi, K., Takenaka, H. et al. (2007). Anti‐herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue‐green alga Nostoc flagelliforme. Biological and Pharmaceutical Bulletin 30 (8): 1573–1575.
68 68 Bafana, A. (2013). Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydrate Polymers 95 (2): 746–752.
69 69 Guzmán, S., Gato, A., Lamela, M. et al. (2003). Anti‐inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum: anti‐inflammatory and immunomodulatory activities. Phytotherapy Research 17 (6): 665–670.
70 70 Gudmundsdottir, A.B., Omarsdottir, S., Brynjolfsdottir, A. et al. (2015). Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL‐10 secretion by human dendritic cells and their ability to reduce the IL‐17+RORγt+/IL‐10+FoxP3+ ratio in CD4+ T cells. Immunology Letters 163 (2): 157–162.
71 71 Halaj, M., Paulovičová, E., Paulovičová, L. et al. (2018). Biopolymer of Dictyosphaerium chlorelloides – chemical characterization and biological effects. International Journal of Biological Macromolecules 113: 1248–1257.
72 72 Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro‐algae Dunaliella salina under salt stress. Bioresource Technology 100 (13): 3382–3386.
73 73 Goo, B.G., Baek, G., Jin Choi, D. et al. (2013). Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresource Technology 129: 343–350.
74 74 Trabelsi, L., Chaieb, O., Mnari, A. et al. (2016). Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complementary and Alternative Medicine 16 (1): 210.
75 75 Liu, X., Zhang, M., Liu, H. et al. (2018). Preliminary characterization of the structure and immunostimulatory and anti‐aging properties of the polysaccharide fraction of Haematococcus pluvialis. RSC Advances 8 (17): 9243–9252.
76 76 Ishiguro, S., Uppalapati, D., Goldsmith, Z. et al. (2017). Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. PLoS One 12 (4): e0175064.
77 77 Lee, J.‐B., Hayashi, K., Hirata, M. et al. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep‐sea water in Toyama Bay. Biological and Pharmaceutical Bulletin 29 (10): 2135–2139.
78 78 Torres, C.A.V., Marques, R., Antunes, S. et al. (2011). Kinetics of production and characterization of the fucose containing exopolysaccharide from Enterobacter A47. Journal of Biotechnology 156: 261–267.
79 79 Alves, V.D., Freitas, F., Torres, C.A.V. et al. (2010). Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate Polymers 81: 758–764.
80 80 Kumar, S.A., Mody, K., and Jha, B. (2007). Bacterial exopolysaccharides – a perception. Journal of Basic Microbiology 47: 103–117.
81 81 Manivasagan, P. and Oh, J. (2016). Marine polysaccharide‐based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules 82: 315–327.
82 82 Aimé, C. and Coradin, T. (2012). Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. Journal of Polymer Science Part B: Polymer Physics 50: 669–680.
83 83 Prasongsuk, S., Loytakul, P., Ali, I. et al. (2018). The current status of Aureobasidium pullulans in biotechnology. Folia Microbiologica 63 (2): 129–140.
84 84 Tabasum, S., Noreen, A., Maqsood, M.F. et al. (2018). A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules 120: 603–632.
85 85 Cheng, K., Demirci, A., and Catchmark, J.M. (2011). Pullulan: biosynthesis, production, and applications. Applied Microbiology and Biotechnology 92: 29–44.
86 86 Singh, R.S., Saini, G.K., and Kennedy, J.F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate Polymers 73 (4): 515–531.
87 87 Giustina, G.D., Gandin, A., Brigo, L. et al. (2019). Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Materials and Design 165: 107566.
88 88 Taskin, M., Erdal, S., and Canli, O. (2010). Utilization of waste loquat (Eriobotrya japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology 19: 1069–1075.
89 89 Castillo, N.A., Valdez, A.L., and Fariña, J.I. (2015). Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology 6: 1106.
90 90 Davison, P. and Mentzer, E. (1982). Polymer flooding in North‐sea reservoirs. Society of Petroleum Engineers Journal 22 (3): 353–362.
91 91 Pirri R., Gadioux J., Rivenq R. (1995) Scleroglucan gel applied in the oil industry. EP 1995/0484217A1.
92 92 Survase, S.A., Saudagar, P.S., Bajaj, I.B., and Singhal, R.S. (2007). Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (2): 107–118.
93 93 Asjadi, S.E., Nerderpel, Q.A., Cotiuga, I.M. et al. (2018). Biopolymer scleroglucan as an emulsion stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 546: 326–333.
94 94 Zhang, Y., Kong, H., Fang, Y. et al. (2013). Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioactive Carbohydrates and Dietary Fibre 1 (1): 53–71.
95 95 Imeson, A. (ed.) (2010). Food Stabilisers, Thickening and Gelling Agents. Wiley Blackwell: United Kingdom.
96 96 Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability 59 (1–3): 81–84.
97 97 Rottava, I., Batesini, G., Silva, M.F. et al. (2009). Xanthan gum production and rheological behaviour using different strain of Xanthomonas sp. Carbohydrate Polymers 77 (1): 65–71.
98 98 Petri, D.F.S. (2015). Xanthan gum: a versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science 132 (23): 420–435.
99 99 Caldeira, I., Lüdtke, A., Tavares, F. et al. (2018). Ecologically friendly xanthan gum‐PVA matrix for solid polymeric electrolytes. Ionics 24: 413–420.
100 100 Tavares, F.C., Dörr, D.S., Pawlicka, A., and Avellaneda, C.O. (2018). Microbial origin xanthan gum‐based solid polymer electrolytes. Journal of Applied Polymer Science https://doi.org/10.1002/app.46229.
101 101 Naessens, M., Cerdobbel, A., Soetaert, W., and Vandamme, E.J. (2005). Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology and Biotechnology 80: 845–860.
102 102 Zhou, Q., Feng, F., Yang, Y. et al. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules 107: 2234–2241.
103 103 Kamoun, E.A., Kenawy, E.S., and Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA‐based hydrogel dressings. Journal of Advanced Research 8: 217–233.
104 104 Maslakci, N.N., Ulusoy, S., Uygun,