Скачать книгу

crítico, analítico y realista, decantándose por la resolución de problemas, las matemáticas y las finanzas.

      – límbico derecho, sería más comunicativo, musical, empático y expresivo, decantándose por el contacto humano, la enseñanza y la expresión oral y escrita.

      – límbico izquierdo, sería más secuencial, detallista, administrador y planificador, decantándose por la administración y gestión, siendo un buen orador y trabajador.

      La persona con predisposición a la matemática sería aquella que tuviese una dominancia cortical izquierda, lo que le facilitaría esta labor, y permitiría un mayor y mejor desarrollo profesional en áreas relacionadas con los números. Pero si bien se puede conocer que existe estas dominancias, las mismas se pueden considerar parte del desarrollo de la cultura y la práctica, lo que, gracias a la neuroplasticidad va a posibilitar que haya personas mejor preparadas que otras para las tareas matemáticas, así si ponemos a dos individuos frente a un problema matemático, uno de carrera de letras, y otro de carrera de ciencias, se esperaría que la segunda, dispusiese de una mayor red de conexiones neuronales, que le facilitase el consumo de recursos, a la hora de realizar cálculos matemáticos, y por tanto, al final pudiese dar mucho antes la respuesta correcta, en la resolución del problema planteado, frente a la otra, que tiene vías y neuronas desarrolladas para las letras.

      Por tanto, se puede hablar de un cerebro matemático, o al menos una predisposición hacia las matemáticas en el cerebro para aquellos que lo han trabajado desde la infancia, al igual que para otras áreas cuando así lo desarrollen, gracias a la didáctica y la educación que se recibe desde pequeño y que va a acompañar a buena parte del estudiante que va progresivamente aumentando en dificultad de las asignaturas relacionadas con las matemáticas ya sea cuantitativa y cualitativamente. Todo ello va a ir conformando el pensamiento abstracto matemático, basto en habilidades memorísticas, de lectura, atencionales, metacognitivas y de autorregulación, que van a permitir el desarrollo de todo el potencial en esta área.

      Pero las neurociencias no solo nos dan cuenta de cuando el cerebro funciona de forma provechosa en cuanto a las matemáticas se refiere sino también cuando se presentan problemas como en el caso de la acalculia, identificado por primera vez por Lewandowski y Stadelman en1908 que da cuenta de las alteraciones semánticas sobre cantidades, déficit en la comprensión y expresión de números y problemas en los cálculos matemáticos. Cuando la acalculia además va acompañada de desorientación derecha-izquierda, agrafia y agnosia digital se denomina síndrome de Gerstmann, viéndose afectado el aprendizaje de las matemáticas básicas, sumar, restar, multiplicar y dividir y no tanto la matemática avanzada como el álgebra, la trigonometría o geometría, sin afectación en ninguna otra área del lenguaje.

      Por tanto la información con respecto a la lesión neuronal permite conocer qué áreas cerebrales está implicada en la manipulación del número; con respecto a su representación se han establecido tres tipos arábigo (1, 2, 3…), romano (I, II, III…); verbal (“uno” es español, “one” en inglés, “un” en francés,…) o escrito (cuarenta y cinco; 45;…), pudiendo además ser abstracto (ligado a magnitudes) o cumplir una función nominal, referido a un conocimiento enciclopédico (1492 fecha del descubrimiento de América por Colón). Aspectos que están íntimamente relacionados entre ellos, así un número escrito puede representar una cantidad y a su vez eso ser un conocimiento específico, a pesar de su aparente interconexión los pacientes con afasia, agrafia o alexia han permitido comprender cómo se trata de procesos independientes, al poderse ver afectado suprimido uno de ellos, quedando los demás intactos.

      Con respecto a las bases neuronales se ha comprobado cómo la compresión y expresión de número de forma verbal se encuentra en el área del lenguaje, en el hemisferio dominante, normalmente el izquierdo, en el giro angular. Por su parte la representación de los números son procesados en la corteza occipito-temporal ventral media y en el giro fusiforme. Con respecto a la representación abstracta de cantidades, está involucrada de forma bihemisférica los surcos intraparietales.

      Siguiendo el modelo del triple código denominado “neuro-funcional” (Dehaene & Cognition, 1995), existen tres instancias en que los números son manipulados mentalmente. Así un imput verbal activa una representación verbal la cual es identificada sus dígitos o con una representación de cantidades, así la palabra “una docena” va a ser traducida como “uno” + “docena”. Pero igualmente la lectura de una cifra “1492” va a provocar la identificación de dígitos para luego convertirlo en representación verbal y enunciarlo en palabras mediante un output, para lo cual se requiere de dos actividades o conocimientos fundamentales:

      – Manipulación interna de cantidades, que incluye tanto la comprensión numérica (de comparación, proximidad…) como aritmética con elaboración semántica (de resta).

      – Conocimiento numérico léxico no cuantitativo, referido a fechas, eventos y otros datos enciclopédicos.

      Existiendo una relación de dependencia funcional entre la comprensión numérica y el cálculo. Por tanto, se puede afirmar que más allá de la localización de una estructura neuronal encargada en el procesamiento de los estímulos relacionados con el número, existe toda una red distribuida a nivel neuronal donde se reparten distintas tareas que van a acompañar el análisis de la estimulación, la identificación del estímulo, la asignación de valor y cantidad, y su manipulación. Todo ello antes incluso de poder pronunciar la palabra correspondiente a dicha cantidad.

      Pero si una estructura neuronal ha destacado en el manejo de las matemáticas esa ha sido el surco intraparietal cuya morfología (profundidad y longitud) han sido relacionados con déficits en el proceso de subitización en menores con síndrome de Turner así como con los que mostraban discalculia, no resultando significativo con las tareas de conteo o comparación de cantidades (Pérez et al., 2016)

      REFERENCIAS

      Alexiou, A., Mantzavinos, V. D., Greig, N. H., & Kamal, M. A. (2017). A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Frontiers in Aging Neuroscience, 9(MAR). https://doi.org/10.3389/fnagi.2017.00077

      Almira, J. M., & Aguilar Domingo, M. (2016). Neuromatemáticas : el lenguaje eléctrico del cerebro. Consejo Superior de Investigaciones Científicas.

      Damasio, H. (2018). Phineas Gage: The brain and the behavior. Revue Neurologique, 174(10), 738–739. https://doi.org/10.1016/j.neurol.2018.09.005

      Dehaene, S., & Cognition, L. C. (1995). Towards an anatomical and functional model of number processing. In Mathematical. Retrieved from https://books.google.com/books?hl=es&lr=&id=eK4egLfRgGkC&oi=fnd&pg=PA83&ots=AG-QTQx2nN&sig=Qkaf1MGkmhJwJasXvtlcufi0gG0

      Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends in Cognitive Sciences, 9(1), 6–10. https://doi.org/10.1016/j.tics.2004.11.004

      Pérez, N. E., Gómez, Y. A., Suárez, R. M., Morales, B. R., Cápiro, M. R., Isangue, R. M., … Sosa, M. V. (2016). A Study of Intraparietal Sulcus’ Morphometric Properties in Children with Developmental Dyscalculia Exhibiting Significant Subitizing Deficits. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 16, 53–74.

      Vargas Vargas, A. R. (2016). Matemáticas y neurociencias: una aproximación al desarrollo del pensamiento matemático desde una perspectiva biológica. Revista Iberoamericana de Educación Matemática, 36, 37–46. Retrieved from www.fisem.org/web/union

      2. EL DESARROLLO MATEMÁTICO

      Si bien hasta ahora se ha planteado sobre las distintas estructuras neuronales que intervienen en el procesamiento matemático, hay que tener en cuenta que este es un proceso que se va desarrollando con el tiempo, gracias al aprendizaje, de forma que se van incrementando las destrezas y capacidades con la práctica.

      A pesar de que algunos teóricos defiendan la aproximación de unas matemáticas innatas o naturales que sirven para identificar diferencias entre cantidades, esto cumplió su función en el inicio de la civilización humana, y con posterioridad la representación de los números, la división

Скачать книгу