ТОП просматриваемых книг сайта:
Физика повседневности. От мыльных пузырей до квантовых технологий. Жак Виллен
Читать онлайн.Название Физика повседневности. От мыльных пузырей до квантовых технологий
Год выпуска 2014
isbn 978-5-0013-9340-5
Автор произведения Жак Виллен
Жанр Физика
Издательство Альпина Диджитал
Давайте вспомним закон, названный во Франции законом Снелла – Декарта или просто законом Декарта, а в других странах – законом Снеллиуса (см. главу 2, «Отражение и преломление световых волн»). Декарт, по-видимому, первым опубликовал его в трактате «Диоптрика» в 1637 году, но закон уже был открыт голландским математиком Виллебрордом Снеллом, или Снеллиусом (1580–1626), а до него – персидским ученым Ибн Салемом в конце X века.
Снелл, вероятно, основывался на экспериментальных работах, в то время как Декарт утверждал, что открыл этот закон, приравняв луч света к траектории пули. Это не слишком понятное доказательство было раскритиковано Пьером де Ферма в работе, опубликованной в 1662 году под названием «Сумма о преломлениях» (Synthèse pour les réfractions). Принцип Ферма, изложенный в этом тексте, гласит, что свет проходит по пути, который позволяет ему скорейшим образом перейти от точки А к точке В (см. илл.). Предоставим читателю вывести закон Снеллиуса из принципа Ферма, что не составит труда при наличии некоторого знания тригонометрии и дифференциального исчисления. Просто найдите точку C, которая минимизирует время, затраченное светом, чтобы пройти по пути ABC, – это время равно (AC/c) + (BC/v), где c – скорость света в воздухе и v = c/n – его скорость в воде.
Если доказательство Декарта любопытно скорее с исторической стороны, то принцип Ферма сохраняет определенный интерес и для современной физики. Кроме того, именно Декарт первым объяснил появление двух радуг и рассчитал соответствующие углы отклонения.
Спасатель (А), которому нужно как можно скорее спасти пловца (B), бежит по пляжу быстрее, чем плывет в море. Самый краткий путь, прямой (1), не будет самым быстрым: спасатель потеряет много времени в море. Если же он максимально сократит время плавания (3), то значительно увеличит путь по пляжу. В итоге самый быстрый путь (2), проходящий через C, – тот, который отвечает закону