Скачать книгу

would be explained by an almost infinite number of actions and reactions between the function and the organ, without the intervention of other than mechanical causes.

      The question is hard to decide, indeed, when put directly between the function and the organ, as is done in the doctrine of finality, as also mechanism itself does. For organ and function are terms of different nature, and each conditions the other so closely that it is impossible to say a priori whether in expressing their relation we should begin with the first, as does mechanism, or with the second, as finalism requires. But the discussion would take an entirely different turn, we think, if we began by comparing together two terms of the same nature, an organ with an organ, instead of an organ with its function. In this case, it would be possible to proceed little by little to a solution more and more plausible, and there would be the more chance of a successful issue the more resolutely we assumed the evolutionist hypothesis.

      Let us place side by side the eye of a vertebrate and that of a mollusc such as the common Pecten. We find the same essential parts in each, composed of analogous elements. The eye of the Pecten presents a retina, a cornea, a lens of cellular structure like our own. There is even that peculiar inversion of retinal elements which is not met with, in general, in the retina of the invertebrates. Now, the origin of molluscs may be a debated question, but, whatever opinion we hold, all are agreed that molluscs and vertebrates separated from their common parent-stem long before the appearance of an eye so complex as that of the Pecten. Whence, then, the structural analogy?

      Let us question on this point the two opposed systems of evolutionist explanation in turn—the hypothesis of purely accidental variations, and that of a variation directed in a definite way under the influence of external conditions.

      The first, as is well known, is presented to-day in two quite different forms. Darwin spoke of very slight variations being accumulated by natural selection. He was not ignorant of the facts of sudden variation; but he thought these “sports,” as he called them, were only monstrosities incapable of perpetuating themselves; and he accounted for the genesis of species by an accumulation of insensible variations.[26] Such is still the opinion of many naturalists. It is tending, however, to give way to the opposite idea that a new species comes into being all at once by the simultaneous appearance of several new characters, all somewhat different from the previous ones. This latter hypothesis, already proposed by various authors, notably by Bateson in a remarkable book,[27] has become deeply significant and acquired great force since the striking experiments of Hugo de Vries. This botanist, working on the Œnothera Lamarckiana, obtained at the end of a few generations a certain number of new species. The theory he deduces from his experiments is of the highest interest. Species pass through alternate periods of stability and transformation. When the period of “mutability” occurs, unexpected forms spring forth in a great number of different directions.[28]—We will not attempt to take sides between this hypothesis and that of insensible variations. Indeed, perhaps both are partly true. We wish merely to point out that if the variations invoked are accidental, they do not, whether small or great, account for a similarity of structure such as we have cited.

      Let us assume, to begin with, the Darwinian theory of insensible variations, and suppose the occurrence of small differences due to chance, and continually accumulating. It must not be forgotten that all the parts of an organism are necessarily coördinated. Whether the function be the effect of the organ or its cause, it matters little; one point is certain—the organ will be of no use and will not give selection a hold unless it functions. However the minute structure of the retina may develop, and however complicated it may become, such progress, instead of favoring vision, will probably hinder it if the visual centres do not develop at the same time, as well as several parts of the visual organ itself. If the variations are accidental, how can they ever agree to arise in every part of the organ at the same time, in such way that the organ will continue to perform its function? Darwin quite understood this; it is one of the reasons why he regarded variation as insensible.[29] For a difference which arises accidentally at one point of the visual apparatus, if it be very slight, will not hinder the functioning of the organ; and hence this first accidental variation can, in a sense, wait for complementary variations to accumulate and raise vision to a higher degree of perfection. Granted; but while the insensible variation does not hinder the functioning of the eye, neither does it help it, so long as the variations that are complementary do not occur. How, in that case, can the variation be retained by natural selection? Unwittingly one will reason as if the slight variation were a toothing stone set up by the organism and reserved for a later construction. This hypothesis, so little conformable to the Darwinian principle, is difficult enough to avoid even in the case of an organ which has been developed along one single main line of evolution, e.g. the vertebrate eye. But it is absolutely forced upon us when we observe the likeness of structure of the vertebrate eye and that of the molluscs. How could the same small variations, incalculable in number, have ever occurred in the same order on two independent lines of evolution, if they were purely accidental? And how could they have been preserved by selection and accumulated in both cases, the same in the same order, when each of them, taken separately, was of no use?

      Let us turn, then, to the hypothesis of sudden variations, and see whether it will solve the problem. It certainly lessens the difficulty on one point, but it makes it much worse on another. If the eye of the mollusc and that of the vertebrate have both been raised to their present form by a relatively small number of sudden leaps, I have less difficulty in understanding the resemblance of the two organs than if this resemblance were due to an incalculable number of infinitesimal resemblances acquired successively: in both cases it is chance that operates, but in the second case chance is not required to work the miracle it would have to perform in the first. Not only is the number of resemblances to be added somewhat reduced, but I can also understand better how each could be preserved and added to the others; for the elementary variation is now considerable enough to be an advantage to the living being, and so to lend itself to the play of selection. But here there arises another problem, no less formidable, viz., how do all the parts of the visual apparatus, suddenly changed, remain so well coördinated that the eye continues to exercise its function? For the change of one part alone will make vision impossible, unless this change is absolutely infinitesimal. The parts must then all change at once, each consulting the others. I agree that a great number of uncoördinated variations may indeed have arisen in less fortunate individuals, that natural selection may have eliminated these, and that only the combination fit to endure, capable of preserving and improving vision, has survived. Still, this combination had to be produced. And, supposing chance to have granted this favor once, can we admit that it repeats the self-same favor in the course of the history of a species, so as to give rise, every time, all at once, to new complications marvelously regulated with reference to each other, and so related to former complications as to go further on in the same direction? How, especially, can we suppose that by a series of mere “accidents” these sudden variations occur, the same, in the same order,—involving in each case a perfect harmony of elements more and more numerous and complex—along two independent lines of evolution?

      The law of correlation will be invoked, of course; Darwin himself appealed to it.[30] It will be alleged that a change is not localized in a single point of the organism, but has its necessary recoil on other points. The examples cited by Darwin remain classic: white cats with blue eyes are generally deaf; hairless dogs have imperfect dentition, etc.—Granted; but let us not play now on the word “correlation.” A collective whole of solidary changes is one thing, a system of complementary changes—changes so coördinated as to keep up and even improve the functioning of an organ under more complicated conditions—is another. That an anomaly of the pilous system should be accompanied by an anomaly of dentition is quite conceivable without our having to call for a special principle of explanation; for hair and teeth are similar formations,[31] and the same chemical change of the germ that hinders the formation of hair would probably obstruct that of teeth: it may be for the same sort of reason that white cats with blue eyes are deaf. In these different examples the “correlative” changes are only solidary changes (not to mention the fact that they are really lesions, namely, diminutions or suppressions, and not additions, which makes a great difference). But when we speak of “correlative” changes occurring suddenly in the different parts of the eye, we use the word in an entirely new sense: this time there is a whole set of changes not only simultaneous,

Скачать книгу