Скачать книгу

который вчетверо меньше этого квадрата. Столяру нужно, ничего не убавляя от доски и ничего к ней не прибавляя, превратить ее в квадратную. Для этого необходимо, конечно, доску предварительно распилить на части. Столяр так и намерен сделать, но он желает распилить доску не более чем по двум прямым линиям.

      Рис. 4. Затруднение столяра

      Возможно ли двумя прямыми линиями разрезать нашу фигуру на такие части, из которых можно было бы составить квадрат? И если возможно, то как это сделать?

      8. Все человечество внутри квадрата

      В настоящее время (1924 г.) на всем земном шаре насчитывается 1800 миллионов человек: 1 800 000 000.

      Представьте, что все люди, живущие на свете, собрались толпой на каком-то ровном месте. Вы хотите поместить их на квадратном участке, отводя по квадратному метру на каждые 20 человек (плотно прижавшись друг к другу, 20 человек смогут поместиться на таком квадрате).

      Попробуйте, не вычисляя, прикинуть, квадрат какого размера понадобился бы для этого. Достаточно ли будет, например, квадрата со стороной 100 км?

      9. Сомнительные квадраты

      Учитель черчения задал школьнику работу: начертить два равных квадрата и заштриховать их. Школьник выполнил работу так, как показано на рис. 5. Он был уверен, что это квадраты и притом равные.

      Почему он так думал?

      Рис. 5

      10. Темные пятна

      Другой школьник должен был начертить несколько рядов черных квадратов, разделенных белыми полосками. Вот как он выполнил эту работу – рис. 6.

      Вы видите, однако, что близ углов квадратов, в том месте, где пересекаются белые полоски, имеются темноватые пятна. Школьник уверял, что он их не делал.

      Откуда же они взялись?

      Рис. 6

      Решения задач 1-10

      1. Расширить площадь пруда вдвое, сохранив его квадратную форму и не тронув дубов, вполне возможно. На рис. 7 показано, как это сделать: надо копать так, чтобы дубы оказались против середины сторон нового квадрата. Легко убедиться, что по площади новый пруд вдвое больше имевшегося: достаточно провести диагонали в прежнем пруде и вычислить площадь образующихся при этом треугольников.

      Рис. 7

      2. Такая проверка недостаточна. Четырехугольник мог выдержать это испытание, и не будучи квадратом. Вы видите на рис. 8 примеры четырехугольников, у которых все стороны равны, но углы не прямые. В геометрии фигуры с четырьмя равными сторонами называются ромбами. Каждый квадрат есть ромб, но не каждый ромб есть квадрат.

      Рис. 8

      3. Эта проверка так же ненадежна, как и первая. Конечно, диагонали квадрата равны, но – как видно из фигур, представленных на рис. 9, – не всякий четырехугольник с равными диагоналями есть квадрат.

      Рис. 9

      Паркетчикам следовало бы применять к каждому вырезанному четырехугольнику обе проверки сразу – тогда они были бы уверены, что работа сделана правильно. Всякий ромб, у которого диагонали между собой равны,

Скачать книгу