Скачать книгу

синтаксис и семантику своей системы одновременно по мере введения новых знаков и выражений. Более того, семантика языка формулируется им с учетом уже имеющейся онтологии внеязыкового мира, для представления которой и создается язык. Однако следует отметить, что Фреге не просто взял стандартную онтологию для арифметики, которая включает теорию чисел и математический анализ, но внес в нее существенные дополнения и изменения, по-новому осмыслив многие математические понятия, прежде всего понятия функции, класса и числа.

      Начнем с того, что Фреге включает в свою онтологию такие типы объектов, как функции и предметы, которые могут выступать в роли аргументов и значений функций. При этом он значительно расширил понятие функции, освободив ее от связи с числами и определив в качестве ее возможных аргументов и значений любые другие предметы, например физические вещи, людей и т. п. Помимо перечисленных он включил в число предметов два абстрактных объекта – «истину» и «ложь», которые являются аргументами и(или) значениями особой категории функций – так называемых логических функций. Частным случаем логических функций (с одним аргументом, определенным на области произвольных предметов, и «истиной» и «ложью» в качестве значения) у Фреге оказываются понятия, которые играют ключевую роль в его логической системе, ибо, относя к арифметике все то, что поддается счету, он полагал, что ее область совпадает с областью понятийного мышления[9]. Поскольку, по его мнению, понятие должно указывать, каким свойством нужно обладать предмету, чтобы подпадать под данное понятие, именно в понятиях он усматривал «основание существования классов». Отождествив понятие с общим свойством, которым должны обладать подпадающие под него предметы, а объем понятия – с классом этих предметов, Фреге ввел в свою онтологию такие важные сущности, как свойства и классы. Кроме того, он особо выделил еще два вида логических функций – отношения (функции с двумя аргументами, определенными на области произвольных предметов, и «истиной» и «ложью» в качестве значения) и пропозициональные функции, где и аргументами, и значениями выступают «истина» и «ложь», которые в дальнейшем стали называть истинностными значениями.

      Таким образом, мы видим, что онтология Фреге довольно богата; она содержит физические вещи, людей, разнообразные абстрактные предметы (числа, классы, истинностные значения), функции, включающие понятия (свойства) и отношения. В последующем, когда его интерес сместился к естественным языкам, его онтология претерпела определенное изменение, поскольку в ней важное место стали занимать «смыслы» и «мысли» как объективные непсихические содержания мышления. Поэтому в целом онтологическую концепцию Фреге можно квалифицировать как реализм в традиционном смысле и, в частности, как математический платонизм, ибо, с его точки зрения, абстрактные предметы, хотя и не существуют в пространстве

Скачать книгу


<p>9</p>

Неслучайно поэтому свое логическое исчисление он называет «записью в понятиях» (Begriffsschrift).