Скачать книгу

аксиомы философии, из них вывести всю философию, или мировую схематику, и затем высочайше октроировать эту свою конституцию природе и человечеству. К сожалению, природа вовсе не состоит из мантёйфелевских пруссаков 1850 г.[41], а человечество состоит из них лишь в самой ничтожной части.

      Математические аксиомы представляют собой выражения крайне скудного умственного содержания, которое математике приходится заимствовать у логики. Их можно свести к следующим двум:

      1. Целое больше части. Это положение является чистой тавтологией, ибо взятое в количественном смысле представление «часть» уже заранее относится определенным образом к представлению «целое», а именно так, что «часть» непосредственно означает, что количественное «целое» состоит из нескольких количественных «частей». Оттого, что так называемая аксиома вполне определенно это констатирует, мы ни на шаг не подвинулись вперед. Эту тавтологию можно даже до известной степени доказать, рассуждая так: целое есть то, что состоит из нескольких частей; часть есть то, что, будучи взято несколько раз, составляет целое; следовательно, часть меньше целого, – причем пустота содержания еще резче подчеркивается пустотой повторения.

      2. Если две величины порознь равны третьей, то они равны между собой. Как доказал уже Гегель, это положение представляет собой заключение, за правильность которого ручается логика[42], – которое, стало быть, доказано, хотя и вне области чистой математики. Прочие аксиомы о равенстве и неравенстве представляют собой только логическое развитие этого заключения.

      На этих тощих положениях ни в математике, ни где бы то ни было в другой области далеко не уедешь. Чтобы подвинуться дальше, мы должны привлечь реальные отношения, отношения и пространственные формы, отвлеченные от действительных тел. Представления о линиях, поверхностях, углах, многоугольниках, кубах, шарах и т. д. – все они отвлечены от действительности, и нужна изрядная доза идеологической наивности, чтобы поверить математикам, будто первая линия получилась от движения точки в пространстве, первая поверхность – от движения линии, первое тело – от движения поверхности и т. д. Даже язык восстает против этого. Математическая фигура трех измерений называется телом, corpus solidum по-латыни, следовательно – даже осязаемым телом, и, таким образом, она носит название, взятое отнюдь не из свободного воображения ума, а из грубой действительности.

      Но к чему все эти пространные рассуждения? После того как г-н Дюринг на страницах 42 и 43[43] вдохновенно воспел независимость чистой математики от эмпирического мира, ее априорность, ее оперирование продуктами свободного творчества и воображения ума, он на странице 63 заявляет:

      «Легко упускают из виду, что эти математические элементы (число, величина, время, пространство и геометрическое движение) идеальны только по своей форме… Абсолютные величины, какого бы рода они ни были,

Скачать книгу


<p>41</p>

Намек на рабскую покорность пруссаков, принявших конституцию, которая была октроирована («дарована») королем 5 декабря 1848 года одновременно с разгоном прусского Учредительного собрания. Конституция, в выработке которой принимал участие реакционный министр Мантёйфель, была окончательно одобрена Фридрихом-Вильгельмом IV 31 января 1850 года.

<p>42</p>

См. Гегель. «Энциклопедия философских наук», § 188; а также «Наука логики», кн. III, отд. I, гл. 3, параграф о четвертой фигуре умозаключения наличного бытия, и отд. III, гл. 2, параграф о теореме.

<p>43</p>

В первом отделе «Анти-Дюринга» все такого рода ссылки на страницы относятся к книге Дюринга «Курс философии».