ТОП просматриваемых книг сайта:
Man's Place in the Universe. Alfred Russel Wallace
Читать онлайн.Название Man's Place in the Universe
Год выпуска 0
isbn
Автор произведения Alfred Russel Wallace
Жанр Физика
Издательство Public Domain
Arrangements have been now made among all the chief observatories of the world to carry out a photographic survey of the heavens with identical instruments, so as to produce maps of the whole star-system on the same scale. These will serve as fixed data for future astronomers, who will thus be able to determine the movements of stars of all magnitudes with a certainty and accuracy hitherto unattainable.
The other important use of photography depends upon the fact that with a longer exposure within certain limits we increase the light-collecting power. It will surprise many persons to learn that an ordinary good portrait-camera with a lens three or four inches in diameter, if properly mounted so that an exposure of several hours can be made, will show stars so minute that they are invisible even in the great Lick telescope. In this way the camera will often reveal double-stars or small groups which can be made visible in no other way.
Such photographs of the stars are now constantly reproduced in works on Astronomy and in popular magazine articles, and although some of them are very striking, many persons are disappointed with them, and cannot understand their great value, because each star is represented by a white circle often of considerable size and with a somewhat undefined outline, not by a minute point of light as stars appear in a good telescope. But the essential matter in all such photographs is not so much the smallness, as the roundness, of the star-images, as this proves the extreme precision with which the image of every star has been kept by the clockwork motion of the instrument on the same point of the plate during the whole exposure. For example, in the fine photograph of the Great Nebula in Andromeda, taken 29th December 1888, by Dr. Isaac Roberts, with an exposure of four hours, there are probably over a thousand stars large and small to be seen, every one represented by an almost exactly circular white dot of a size dependent on the magnitude of the star. These round dots can be bisected by the cross hairs of a micrometer with very great accuracy, and thus the distance between the centres of any of the pairs, as well as the direction of the line joining their centres, can be determined as accurately as if each was represented by a point only. But as a minute white speck would be almost invisible on the maps, and would convey no information as to the approximate magnitude of the star, mistakes would be much more easily made, and it would probably be found necessary to surround each star with a circle to indicate its magnitude, and to enable it to be easily seen. It is probable, therefore, that the supposed defect is really an important advantage. The above-mentioned photograph is beautifully reproduced in Proctor's Old and New Astronomy, published after his greatly lamented death.
But besides the amount of altogether new knowledge obtained by the methods of research here briefly explained, a great deal of light has been thrown on the distribution of the stars as a whole, and hence on the nature and extent of the stellar universe, by a careful study of the materials obtained by the old methods, and by the application of the doctrine of probabilities to the observed facts. In this way alone some very striking results have been reached, and these have been supported and strengthened by the newer methods, and also by the use of new instruments in the measurement of stellar distances. Some of these results bear so closely and directly upon the special subject of the present volume, that our next chapter must be devoted to a consideration of them.
CHAPTER IV
If we look at the heavens on a clear, moonless night in winter, and from a position embracing the entire horizon, the scene is an inexpressibly grand one. The intense sparkling brilliancy of Sirius, Capella, Vega, and other stars of the first magnitude; their striking arrangement in constellations or groups, of which Orion, the Great Bear, Cassiopeiæ, and the Pleiades, are familiar examples; and the filling up between these by less and less brilliant points down to the limit of vision, so as to cover the whole sky with a scintillating tracery of minute points of light, convey together an idea of such confused scattering and such enormous numbers, that it seems impossible to count them or to reduce them to systematic order. Yet this was done for all except the faintest stars by Hipparchus, 134 B.C., who catalogued and fixed the positions of more than 1000 stars, and this is about the number, down to the fifth magnitude, visible in the latitude of Greece. A recent enumeration of all the stars visible to the naked eye, under the most favourable conditions and by the best eyesight, has been made by the American astronomer, Pickering. His numbers are—for the Northern Hemisphere 2509, and for the Southern Hemisphere 2824, thus showing a somewhat greater richness in the southern celestial hemisphere. But as this difference is due entirely to a preponderance of stars between magnitudes 51/2 and 6, that is, just on the limits of vision, while those down to magnitude 51/2 are more numerous by 85 in the Northern Hemisphere, Professor Newcomb is of opinion that there is no real superiority of numbers of visible stars in one hemisphere over the other. Again, the total number of the visible stars by the above enumeration is 5333. But this includes stars down to 6.2 magnitude, while it is generally considered that magnitude 6 marks the limit of visibility. On a re-examination of all the materials, the Italian astronomer Schiaparelli concludes that the total number of stars down to the sixth magnitude is 4303; and they seem to be about equally divided between the northern and southern skies.
But besides the stars themselves, a most conspicuous object both in the northern and southern hemisphere is that wonderful irregular belt of faintly diffused light termed the Milky Way or Galaxy. This forms a magnificent arch across the sky, best seen in the autumn months in our latitude. This arch, while following the general course of a great circle round the heavens, is extremely irregular in detail, sometimes being single, sometimes double, sending off occasional branches or offshoots, and also containing in its very midst dark rifts, spots, or patches, where the black background of almost starless sky can be seen through it. When examined through an opera-glass or small telescope quantities of stars are seen on the luminous background, and with every increase in the size and power of the telescope more and more stars become visible, till with the largest and best modern instruments the whole of the Galaxy seems densely packed with them, though still full of irregularities, wavy streams of stars, and dark rifts and patches, but always showing a faint nebulous background as if there remained other myriads of stars which a still higher optical power would reveal.
The relations of this great belt of telescopic stars to the rest of the star-system have long interested astronomers, and many have attempted its solution. By a system of gauging, that is counting all the stars that passed over the field of his telescope in a certain time, Sir William Herschel was the first who made a systematic effort to determine the shape of the stellar universe. From the fact that the number of stars increased rapidly as the Milky Way was approached from whatever direction, while in the Galaxy itself the numbers visible were at once more than doubled, he formed the idea that the shape of the entire system must be that of a highly compressed very broad mass or ring rather less dense towards the centre where our sun was situated. Roughly speaking, the form was likened to a flat disc or grindstone, but of irregular thickness, and split in two on one side where it appears to be double. The immense quantity of the stars which formed it was supposed to be due to the fact that we looked at it edgewise through an immense depth of stars; while at right angles to its direction when looking towards what is termed the pole of the Galaxy, and also in a less degree when looking obliquely, we see out into space through a much thinner stratum of stars, which thus seem on the average to be very much farther apart.
But, in the latter part of his life, Sir William Herschel realised that this was not the true explanation of the features presented by the Galaxy. The brilliant spots and patches in it, the dark rifts and openings, the narrow streams of light often bounded by equally narrow streams or rifts of darkness, render it quite impossible to conceive that this complex luminous ring has the form of a compressed disc extending in the direction in which we see it to a distance many times greater than its thickness. In one very luminous cluster Herschel thought that his telescope had penetrated to regions twenty times as far off as the more brilliant stars forming the nearer portions of the