Скачать книгу

этого весьма простого и не слишком интересного процесса является то, что в его основе лежит не какая-то тенденция или сила, уводящая молекулы перманганата из более населенной области в менее населенную, словно жителей страны, переезжающих в свободные регионы. С нашими молекулами перманганата не происходит ничего подобного. Каждая ведет себя независимо от других, с которыми очень редко сталкивается. Каждая – как в населенной области, так и в пустой – постоянно испытывает удары молекул воды и постепенно движется в непредсказуемом направлении – иногда в область с большей концентрацией, порой в область с меньшей или вообще вбок. Перемещения такой молекулы часто сравнивают с движением на открытом пространстве слепого человека. Он одержим желанием «шагать», но не может выбрать направления, а потому непрерывно меняет свой курс.

      Рис. 4. Диффузия слева направо в растворе с различной концентрацией

      То, что это случайное блуждание всех без исключения молекул перманганата должно привести к регулярному потоку в направлении меньшей концентрации и – в конце концов – к равномерному распределению, на первый взгляд вызывает недоумение. Если поделить рис. 4 на тонкие срезы с приблизительно постоянной концентрацией, молекулы перманганата, содержащиеся в данном конкретном срезе в некий момент времени, за счет случайного движения с равной вероятностью переместятся влево или вправо. Однако благодаря этому плоскость, разделяющую соседние срезы, пересечет больше молекул, приходящих слева, нежели справа, – просто потому, что слева находится больше молекул, вовлеченных в случайное движение. И пока это соответствует действительности, результатом будет регулярный поток слева направо – до достижения равномерного распределения.

      Если перевести эти рассуждения на язык математики, закон диффузии будет представлять собой дифференциальное уравнение с частными производными:

      Я избавлю читателя от объяснений, хотя значение этого закона можно выразить простым языком. А именно: концентрация в любой конкретной точке возрастает или падает со временем пропорционально сравнительному избытку или недостатку концентрации в ее бесконечно малом окружении. Кстати, закон теплопроводности выглядит точно так же, только вместо концентрации стоит температура. Я привел этот суровый «математически строгий» закон, желая подчеркнуть, что его физическая точность должна, тем не менее, ставиться под сомнение в каждом конкретном случае. Он основан на случайности, и его правомерность приблизительна. Как правило, это очень хорошее приближение, но лишь благодаря огромному числу молекул, вовлеченных в явление. Чем меньше их количество, тем более сильных случайных отклонений следует ожидать – и они наблюдаются при неблагоприятных условиях.

Пример третий (пределы точности измерения)

      Последний пример весьма похож на второй, однако представляет особый интерес. Легкое тело, подвешенное на длинной тонкой нити в равновесной ориентации, часто используется

Скачать книгу