Скачать книгу

но с оговорками. Коперниковские орбиты имели форму идеальных окружностей. Но поскольку такая модель не соответствовала наблюдаемому движению планет, Коперник откорректировал ее, добавив небольшие круги-эпициклы (как и Птолемей в свое время). Все-таки модель не вполне точно описывала положения планет на небе. Кеплер понял, что модель Коперника нужно доработать. У него была информация – таблицы движения планет, составленные Тихо Браге, – и по этим таблицам он вывел три закона движения планет. Сегодня они именуются законами Кеплера.

      Первый закон гласит: «Планеты движутся вокруг Солнца по эллиптическим, а не по круговым орбитам» (рис. 2.4). Что такое эллипс? С математической точки зрения у круга всего один центр, а у эллипса, можно сказать, два – они называются фокусами. Все точки окружности равноудалены от центра, а у всех точек на линии эллипса – одинаковая сумма расстояний до двух фокусов. Фактически круг – частный случай эллипса, где оба фокуса находятся в одной и той же точке. В продолговатом эллипсе фокусы значительно удалены друг от друга. Чем сильнее мы сблизим фокусы, тем ближе к идеальной окружности будет полученная фигура.

      По Кеплеру, планетная орбита представляет собой эллипс, в одном из фокусов которого находится Солнце. Это утверждение уже было революционным. Древние греки считали, что поскольку Вселенная божественна, она должна быть совершенной, причем в греческой философии была конкретная концепция «совершенства». Круг – совершенная фигура; все точки окружности находятся на одинаковом расстоянии от центра; это и есть совершенство. Звезды движутся кругами, полагали древние греки. Эта философия сохранялась в течение тысячелетий.

      Рис. 2.4. Законы Кеплера. Величина a называется большой полуосью, она равна половине диаметра эллиптической орбиты. В случае круговой орбиты с нулевым эксцентриситетом большая полуось будет равна радиусу. Предоставлено Дж. Ричардом Готтом

      А затем появляется Кеплер и говорит: «Люди, орбиты – это не окружности. Я взял таблицы Тихо и пришел к выводу, что орбиты – это эллипсы».

      Далее он показал, что при вращении планеты скорость ее изменяется в зависимости от того, насколько она приближается к Солнцу. Представьте себе идеально круглую орбиту. Нет никаких причин на то, чтобы скорость движения планеты в разных точках окружности отличалась; планета всегда должна вращаться с одной и той же скоростью. Но с эллипсом все иначе. Когда скорость планеты будет максимальной? Тогда, когда планета будет ближе всего к Солнцу. Кеплер обнаружил, что планета движется наиболее быстро, будучи ближе всего к Солнцу, а чем дальше – тем медленнее она летит.

      Кеплер обдумал эту задачу с геометрической точки зрения и решил: «Давайте измерим, как далеко планета успевает уйти, скажем, за месяц». Если планета расположена близко от Солнца и вращается быстро, то она будет заметать определенную площадь орбиты, так что получается вот такой неаккуратный широкий веер (см. рис.

Скачать книгу