Скачать книгу

следующее уравнение авторегрессии (с округлением):

      USDOLLAR = 0,2260+1,2980 USDOLLAR(-1) -0,3047 USDOLLAR(-2)

      Где USDOLLAR ‑ зависимая переменная курс доллара США; USDOLLAR(-1) ‑ независимая переменная курс доллара США с лагом один месяц; USDOLLAR(-2) ‑ независимая переменную курс доллара США с лагом в два месяца; 0,2260 ‑ свободный член (константа).

      При этом экономическая интерпретация данного уравнения авторегрессии второго порядка следующая: во-первых, в период с июня 1992 по апрель 2010 г. при исходном уровне 0,2260 руб. рост на один рубль курса доллара в текущем месяце приводил к повышению прогнозируемого курса доллара в будущем месяце в среднем на 1,2980 руб.; во-вторых, одновременно с этим рост курса доллара в прошлом месяце приводил к снижению прогнозируемого кура доллара в будущем месяце в среднем на 0,3047 руб.

      Действуя согласно алгоритму действий № 4 «Оценка статистической значимости уравнения регрессии и его коэффициентов», мы можем сделать следующие выводы.

      1.1. Поскольку коэффициент детерминации R2для данного уравнения регрессии оказался равен 0,9977, то отсюда можно сделать вывод, что оно в 99,77% случаях в состоянии объяснить ежемесячные колебания курса доллара.

      1.2. Значимость F равна 1,3E-245или =0, а, следовательно, уравнение регрессии статистически значимо как при 95% уровне надежности, так и при 99% уровне надежности.

      2.1. P-Значение для коэффициента свободного члена уравнения равно 0,037226, а следовательно этот коэффициент статистически значим лишь при 95% уровне надежности, но не значим при 99% уровне надежности, поскольку он больше 0,01. P-Значение для двух коэффициентов регрессии равно 0, а, следовательно, эти коэффициенты статистически значимы как при 95% уровне надежности, так и при 99% уровне надежности.

      Таблица 3.2 «Вывод итогов в Excel для уравнения авторегрессии второго порядка AR(2)»

      3.5. Решения в EViews уравнения авторегрессии второго порядка AR(2)

      Однако вышеуказанное уравнение авторегрессии второго порядка с константой можно решить не только в Excel, но и в EViews. Более того, решение данного уравнения регрессии в EViews имеет ряд преимуществ, обусловленных спецификой данной программы. Во-первых, в EViews можно быстрее оценить прогностическую точность полученной статистической модели; во-вторых, есть возможность протестировать полученные остатки на стационарность, наличие автокорреляции, а также провести ряд других важных тестов, о которых мы расскажем позднее. Тем читателям, которым еще не приходилось решать уравнения регрессии в EViews, советуем внимательно познакомиться с алгоритмом действий № 5 «Как решить уравнение регрессии в EViews»

      Алгоритм действий № 6 «Как решить уравнение регрессии в EViews»

      Шаг 1. Импорт данных из Excel и создание рабочего файла в EViews

      Для импорта ежемесячных данных по курсу доллара (на конец месяца) за период с июня 1992 г. по апрель 2010 г. из Excel в EViews необходимо воспользоваться алгоритмом действий № 2 «Импорт данных и создание рабочего файла в EViews». При этом столбец с соответствующими данными по курсу доллара мы обозначили как USDOLLAR.

      Шаг 2. Выбор опций в EViews для решения уравнения регрессии.

      После

Скачать книгу