Скачать книгу

то дисперсия имеет размерность в квадратных сантиметрах. Поэтому для удобства использования дисперсию берут под корень, получая по итогу показатель, называемый среднеквадратическим отклонением.

      К несчастью, дисперсия и среднеквадратическое отклонение так же неустойчивы к выбросам, как и среднее арифметическое.

      Среднее значение и среднеквадратическое отклонение очень часто совместно используются для описания той или иной группы котиков. Дело в том, что, как правило, большинство (а именно около 68%) котиков находится в пределе одного среднеквадратического отклонения от среднего. Эти котики обладают так называемым нормальным размером. Оставшиеся 32% либо очень большие, либо очень маленькие. В целом же для большинства котиковых признаков картина выглядит вот так.

      Такой график называется нормальным распределением признака.

      Таким образом, зная всего два показателя, вы можете с достаточной долей уверенности сказать, как выглядит типичный котик, насколько разнообразными являются котики в целом и в каком диапазоне лежит норма по тому или иному признаку.

      НЕМАЛОВАЖНО ЗНАТЬ!

      Выборка, генеральная совокупность и два вида дисперсии

      Чаще всего нас как исследователей интересуют все котики без исключения. Статистики называют этих котиков генеральной совокупностью. Однако, на практике мы не можем замерить всю генеральную совокупность – как правило, мы работаем только с небольшим количеством котиков, называемым выборкой.

      Очень важно, чтобы выборка была максимально похожа на генеральную совокупность. Степень такой похожести называется репрезентативностью.

      Необходимо запомнить, что существует две формулы дисперсии: одна для генеральной совокупности, другая – для выборки. В знаменателе первой всегда стоит точное количество котиков, а у второй – ровно на одного котика меньше.

      Корень из дисперсии генеральной совокупности, как уже было сказано, называется среднеквадратическим отклонением. А вот корень из дисперсии по выборке называется стандартным отклонением.

      Однако, не будет большой ошибкой, если вы будете пользоваться терминами стандартное отклонение генеральной совокупности и стандартное отклонение выборки. Чаще всего именно последнее и рассчитывается для реальных исследований.

      Глава 2.

      Картинки с котиками

      или средства визуализации данных

      В предыдущей главе мы говорили про показатели, которые помогают определить, какой размер является для котиков типичным и насколько он бывает разнообразным. Но когда нам требуется получить более полные и зрительно осязаемые представления о котиках, мы можем прибегнуть к так называемым средствам визуализации данных.

      Первая группа средств показывает, сколько котиков обладает тем или иным размером. Для их использования необходимо предварительно

Скачать книгу