ТОП просматриваемых книг сайта:
ЕГЭ 2025. Информатика и ИКТ. Значения логических выражений. 15. Лада Есакова
Читать онлайн.Название ЕГЭ 2025. Информатика и ИКТ. Значения логических выражений. 15
Год выпуска 2024
isbn
Автор произведения Лада Есакова
Издательство Автор
Итак, рецепт достижения нужных временных характеристик есть, но методических материалов, подборок всех типов задач, к сожалению, практически нет. Поэтому в данное методическое пособие (позадачный тренинг) я включила авторские задачи абсолютно всех типов, которые встречались в тренировочных, репетиционных и диагностических работах, в вариантах ЕГЭ по Информатике и ИКТ основной и досрочной волны 2013-2025 гг. Блоки задач расположены по возрастанию сложности. Для закрепления каждой темы в книге представлены тренировочные работы. В конце книги приведены ответы ко всем заданиям.
Отработав каждый тип заданий, научившись решать их быстро и безошибочно, вы обеспечите себе высокий балл на ЕГЭ.
Искренне желаю успехов!
Аналитическая справка
При всем кажущемся разнообразии заданий 15 (числовые отрезки, делимость, конъюнкция и пр.) все они сводятся к поиску значения параметра A, для которого указанное логическое выражение истинно (или ложно) для всех значений переменной x. А потому и решать все типы этого задания мы будем практически одинаково.
Рекомендую следующий порядок действий:
1). Вводим более короткие и понятные обозначения
Это очень важный шаг, поскольку исходное выражение может быть громоздким, преобразовать его без ошибок очень сложно.
2). Приводим выражение к виду P(x) ∨ A(x) = 1
Используя приведенные ниже законы алгебры логики преобразуем исходное выражение в логическую сумму P(x) – выражение с известными значениями и A(x) – выражение с искомым параметром.
3). Заменяем исходное выражение эквивалентной системой
Если P(x) = 1, то логическая сумма P(x) ∨ A(x) принимает значение 1 при любом A(x) и мы не сможем его найти. Если P(x) = 0, то логическая сумма P(x) ∨ A(x) принимает значение 1 только при A(x) = 1.
4). Решаем уравнение P(x) = 0
Т.е. находим множество значений переменной х, для которых выполняется условие этого уравнения.
5). Подставляем решение первого уравнения в уравнение A(x) = 1 и находим значение A.
Можно решить эту задачу программным способом. Для этого напишем программу, которая:
1). В цикле перебирает достаточно большой диапазон возможных значений параметра A.
2). Во вложенном цикле для каждого из значений A перебирает достаточно большой диапазон значений переменной x (или переменных x, y) и подставляет в исходное выражение.
3). Если выражение принимает значений 1 для всех значений x (или переменных x, y), программа делает вывод, что текущее значение A «хорошее».
4). Из «хороших» значений A выбирает удовлетворяющее условию задачи (наибольшее, наименьшее).
Логическим операциям соответствуют следующие операции в языках программирования:
ЧИСЛОВЫЕ ОТРЕЗКИ
Тренировочная работа 1
1. На числовой прямой даны два отрезка: P = [5, 10] и Q = [15, 18]. Выберите такой отрезок A, что формула
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [3, 11] 2) [6, 10] 3) [8, 16] 4) [17, 23]
2. На числовой прямой даны три отрезка: P = [10, 50], Q = [15, 20] и R = [30, 80]. Выберите такой отрезок A, что формула
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [10, 25] 2) [25, 50] 3) [40, 60] 4) [50, 80]
3. На числовой прямой даны три отрезка: P = [15, 30], Q = [5, 10] и R = [20, 25]. Выберите такой отрезок A, что формула
тождественно ложна, то есть принимает значение 0 при любом значении переменной х.
1) [0, 20] 2) [0, 10] 3) [10, 15] 4) [25, 30]
4. На числовой прямой даны два отрезка: P = [44; 49] и Q = [28; 53]. Укажите наибольшую возможную длину такого отрезка A, что формула
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
5. На числовой