Скачать книгу

книге не рассматриваются системы управления базами данных, такие как MongoDB и Hbase. В ней не рассказывается о пакетах для разработчиков, таких как Mahout, Numpy, различных R-библиотеках и т. д. Для этого существуют другие книги.

      Я сделал так намеренно. Эта книга игнорирует инструменты, хранилища и код. Вместо этого она, по возможности, фокусируется на методах. Многие думают, что если смешать хранение и извлечение данных с щепоткой очистки и агрегации, получится коктейль «Все, что нужно знать о больших данных».

      Они ошибаются. Эта книга поможет вам беспрепятственно пробиться сквозь завесу многозначительной болтовни, которой нас окружают продавцы программного обеспечения для работы с большими данными и блогеры, и покажет вам, на что на самом деле способны ваши данные. Что примечательно, для большинства этих техник объем ваших данных может быть любым – крошечным или огромным. Вы не обязаны иметь петабайт данных и энную сумму с пятью нулями на предсказание интересов вашей огромной клиентской базы. Иметь массив данных – это, конечно, замечательно, однако есть бизнесы, прекрасно обходящиеся и без этого «сокровища», более того – никому не хочется их генерировать. Например, мяснику, торгующему в моем родном квартале. Но это не значит, что его бизнесу помешало бы небольшое кластерное разделение «бекон/колбаса».

      Если сравнивать книги с видами спорта, моя книга сравнима с гимнастикой. Никаких тренажеров и упражнений на выносливость. Поняв, как реализовывать техники с помощью базовых инструментов, вы обнаружите, что свободно можете применять их во многих технологиях, с легкостью моделировать их, правильно выбирать программные продукты у консультантов, формулировать задачи программистам и т. д.

      Кто я?

      Давайте прервемся ненадолго, и я расскажу вам о себе. Научный подход к изучению данных, который я проповедую, возник не вчера – к нему меня вел долгий путь. Много лет назад я был консультантом по менеджменту. Я работал над аналитическими проблемами таких организаций, как ФБР, министерство обороны США, компания Coca-Cola, группы отелей Intercontinental и Royal Carribbean. Из всего этого опыта я вынес одно: наука о данных должна стать прерогативой не только ученых.

      Я работал с менеджерами, которые покупали симуляции, когда им были нужны модели оптимизации. Я работал с аналитиками, которые понимали только графики Ганта[1], так что абсолютно все приходилось представлять в виде этих графиков. Как консультанту, мне было нетрудно расположить к себе покупателя, имея в арсенале любые старые бумаги и миленькую презентацию в PowerPoint, потому что они не могли отличить искусственный интеллект от бизнес-анализа, а бизнес-анализ – от ВS.

      Цель этой книги – расширение аудитории, способной понять и применить техники научного анализа данных. Я не пытаюсь обратить вас, уважаемые читатели, в специалистов по научной обработке данных против вашей воли. Я просто хочу, чтобы вы научились

Скачать книгу


<p>1</p>

Популярный тип столбчатых диаграмм (гистограмм), который используется для иллюстрации плана, графика работ по какому-либо проекту. Является одним из методов планирования проектов. – Прим. ред.