ТОП просматриваемых книг сайта:
Войны будущего. От ракеты «Сармат» до виртуального противостояния. Виталий Поликарпов
Читать онлайн.Название Войны будущего. От ракеты «Сармат» до виртуального противостояния
Год выпуска 2015
isbn 978-5-906798-52-7
Автор произведения Виталий Поликарпов
Жанр Прочая образовательная литература
В этом плане заслуживают внимания исследования математического и программного обеспечения фрактального распознавания природных и искусственных объектов, которые осуществлены отечественными учеными А.С. Аветисовым, М.А. Карповым, М.В. Юрковым и другими. Ими предложен алгоритм оценки размера фрактала текстуры по длине контура, а также адаптивный алгоритм для фрактального распознавания искусственных объектов, основанный на концепции кромкосохраняющего сглаживания для правильной оценки фрактальной размерности в окрестности краев; рассмотрен метод распознавания искусственных объектов на фоне природного пейзажа, основанный на модели фракгальносги; представлено описание модели в форме набора уравнений плоскостных кривых, показано, что такие признаки целей, как прямые линии, образующие силуэты, могут быть использованы для обнаружения объектов[130].
Оценка фрактальности текстуры является важной характеристикой при сегментации по размеру фрактала. Алгоритм оценки размера фрактала текстуры по длине контура состоит в развитии алгоритма оценки размера фрактала линии для оценки размера фрактала поверхности. Для оценки фрактала текстуры производится разбиение динамического диапазона яркостей изображения на равные интервалы. Для полученного набора пороговых уровней строится бинарное изображение. При этом отсчетам, яркость которых меньше порога, приписывается значение 0, а отсчетам, яркость которых выше или равна порогу, приписывается значение 1. Таким образом, исходное изображение представляется набором бинарных изображений. Для каждого из таких изображений производится оценка размера фрактала контуров единичных областей. В качестве оценки размера фрактала исходного изображения используется среднее значение полученных фракталов для бинарных изображений. При этом следует оценивать размер фрактала бинарных изображений только по строкам, только по столбцам, а также совместно по строкам и столбцам, что имеет особое значение при распознавании анизотропных текстур. Это значит, что фрактальная обработка сигналов
129
Там же. С. 25.
130
См. Аветисов А.С., Карпов М.А., Юрков М.В., Егорова Е.В., Нефедов В.И., Харитонов А.Ю. Математическое и программное обеспечение фрактального распознавания природных и искусственных объектов // Нелинейный мир. 2012. Т. 10. № 7. Дальше нами используется изложенный здесь материал (См. Там же. С. 459–460).