Скачать книгу

minus bold r 0 right-parenthesis"/> (2.124)

      The inhomogeneous part is the delta function which allows for this elegant derivation of the Kirchhoff integral. The delta function is introduced in the appendix A.1.3 in the time domain. However, it can also be applied in space. The multidimensional delta function is simply the product of three Dirac delta functions in space

       delta left-parenthesis bold r minus bold r 0 right-parenthesis equals delta left-parenthesis x minus x 0 right-parenthesis delta left-parenthesis y minus y 0 right-parenthesis delta left-parenthesis y minus y 0 right-parenthesis with bold r equals Start 1 By 1 Matrix 1st Row x comma y comma z EndMatrix Superscript upper T (2.125)

      The sifting properties and the value of the integration is defined by volume integral

       f left-parenthesis bold r right-parenthesis equals integral Underscript upper V Endscripts f left-parenthesis bold r 0 right-parenthesis delta left-parenthesis bold r minus bold r 0 right-parenthesis d bold r 0 and integral Underscript upper V Endscripts delta left-parenthesis bold r right-parenthesis d bold r equals 1 (2.126)

      The solution of Equation (2.124) is the point source (2.91)3.

      In order to achieve a common formulation we add an arbitrary solution χ of the homogeneous wave equation

       normal upper Delta chi left-parenthesis bold r vertical-bar bold r 0 right-parenthesis plus k squared chi left-parenthesis bold r vertical-bar bold r 0 right-parenthesis equals 0 (2.128)

      to the Green’s function to get the generalized Green’s function

       upper G left-parenthesis bold r comma bold r 0 right-parenthesis equals g left-parenthesis bold r comma bold r 0 right-parenthesis plus chi left-parenthesis bold r comma bold r 0 right-parenthesis (2.129)

       normal upper Delta bold-italic p left-parenthesis bold r right-parenthesis plus k squared bold-italic p left-parenthesis bold r right-parenthesis equals minus bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis (2.130)

       normal upper Delta upper G left-parenthesis bold r comma bold r 0 right-parenthesis plus k squared upper G left-parenthesis bold r comma bold r 0 right-parenthesis equals minus delta left-parenthesis bold r minus bold r 0 right-parenthesis (2.131)

      Figure 2.9 Solution volume and boundaries. Source: Alexander Peiffer.

      In order to receive a global solution we perform the operation

       upper G left-parenthesis bold r comma bold r 0 right-parenthesis dot left-parenthesis 2.130 right-parenthesis minus bold-italic p left-parenthesis bold r right-parenthesis dot left-parenthesis 2.131 right-parenthesis (2.132)

      This leads to

       upper G left-parenthesis bold r comma bold r 0 right-parenthesis normal upper Delta bold-italic p left-parenthesis bold r right-parenthesis minus bold-italic p left-parenthesis bold r right-parenthesis normal upper Delta upper G left-parenthesis bold r comma bold r 0 right-parenthesis equals minus left-bracket upper G left-parenthesis bold r comma bold r 0 right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis minus bold-italic p left-parenthesis bold r right-parenthesis delta left-parenthesis bold r comma bold r 0 right-parenthesis right-bracket (2.133)

      Exchanging r and r0 and integrating r0 over the volume V gives

       StartLayout 1st Row 1st Column integral Underscript upper V Endscripts upper G left-parenthesis bold r 0 comma bold r right-parenthesis normal upper Delta bold-italic p left-parenthesis bold r 0 right-parenthesis 2nd Column bold-italic p left-parenthesis bold r 0 right-parenthesis normal upper Delta upper G left-parenthesis bold r 0 comma bold r right-parenthesis d bold r 0 equals 2nd Row 1st Column Blank 2nd Column integral Underscript upper V Endscripts upper G left-parenthesis bold r 0 comma bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r 0 right-parenthesis d bold r 0 plus ModifyingBelow integral Underscript upper V Endscripts bold-italic p left-parenthesis bold r 0 right-parenthesis delta left-parenthesis bold r minus bold r 0 right-parenthesis d bold r 0 With bottom-brace Underscript equals bold-italic p left-parenthesis bold r right-parenthesis Endscripts EndLayout (2.134)

      The last term on the RHS follows from the sifting property of the delta function

       StartLayout 1st Row 1st Column bold-italic p left-parenthesis bold r right-parenthesis 2nd Column equals integral Underscript upper V Endscripts upper G left-parenthesis bold r 0 comma bold r right-parenthesis bold-italic f Subscript q Baseline left-parenthesis bold r right-parenthesis d bold r 0 2nd Row 1st Column Blank 2nd Column integral Underscript upper V Endscripts upper G left-parenthesis bold r 0 comma bold r right-parenthesis normal upper Delta bold-italic p left-parenthesis bold r 0 right-parenthesis minus bold-italic p left-parenthesis bold r 0 right-parenthesis normal upper Delta upper G left-parenthesis bold r 0 comma bold r right-parenthesis d bold r 0 period EndLayout (2.135)

       integral Underscript upper V Endscripts left-parenthesis normal upper Phi normal upper Delta normal upper Psi minus normal upper Psi normal upper Delta normal upper Phi right-parenthesis d upper V equals integral Underscript partial-differential upper V Endscripts left-parenthesis normal upper Phi nabla normal upper Psi minus normal upper Psi nabla normal upper Phi right-parenthesis d upper S (2.136)

      some volume integrals can be transferred into surface integrals and we get finally