Скачать книгу

critical viscous-damping. There are additional expressions for the period and frequency

       StartLayout 1st Row 1st Column f 0 2nd Column equals StartFraction omega 0 Over 2 pi EndFraction 3rd Column upper T 0 4th Column equals StartFraction 1 Over f 0 EndFraction EndLayout (1.7)

      where f0 is the natural frequency and T0 the oscillation period. Equations (1.1)–(1.3) can now be written as

       StartLayout 1st Row ModifyingAbove u With two-dots plus 2 zeta omega 0 ModifyingAbove u With dot plus omega 0 squared u equals 0 EndLayout (1.8)

       StartLayout 1st Row s squared plus 2 zeta omega 0 s plus omega 0 squared equals 0 EndLayout (1.9)

      The problem falls into three cases:

       ζ > 1 overdamped

       ζ < 1 underdamped

       ζ = 1 critically damped.

      1.1.2 The Overdamped Oscillator (ζ > 1)

      Both roots in Equation (1.10) are real, distinct and negative. The motion is called overdamped because introducing this into Equation (1.4) gives a sum of decaying exponential functions:

       u left-parenthesis t right-parenthesis equals upper B 1 e Superscript left-parenthesis negative zeta plus StartRoot zeta squared minus 1 EndRoot right-parenthesis omega 0 t Baseline plus upper B 2 e Superscript left-parenthesis negative zeta minus StartRoot zeta squared minus 1 EndRoot right-parenthesis omega 0 t (1.11)

       upper B Subscript 1 slash 2 Baseline equals plus-or-minus StartFraction u 0 omega 0 left-parenthesis zeta plus-or-minus StartRoot zeta squared minus 1 EndRoot right-parenthesis plus v Subscript x Baseline 0 Baseline Over 2 omega 0 StartRoot zeta squared minus 1 EndRoot EndFraction (1.12)

      Figure 1.2 Decaying components of the overdamped oscillator. Source: Alexander Peiffer.

      1.1.3 The Underdamped Oscillator (ζ < 1)

      Here, the roots are complex conjugates and the solution of Equation (1.10) becomes:

       StartLayout 1st Row u left-parenthesis t right-parenthesis equals e Superscript minus zeta omega 0 t Baseline left-parenthesis upper B 1 e Superscript j left-parenthesis 1 minus zeta squared right-parenthesis Super Superscript 1 slash 2 Superscript omega 0 t Baseline plus upper B 2 e Superscript minus j left-parenthesis 1 minus zeta squared right-parenthesis Super Superscript 1 slash 2 Superscript omega 0 t Baseline right-parenthesis EndLayout (1.13)

       StartLayout 1st Row equals ModifyingAbove u With caret Subscript 0 Baseline e Superscript minus zeta omega 0 t Baseline c o s left-parenthesis left-parenthesis 1 minus zeta right-parenthesis Superscript 1 slash 2 Baseline omega 0 t plus phi 0 right-parenthesis EndLayout (1.14)

      The motion is oscillatory with a frequency that is lower than in the undamped configuration:

       omega Subscript d Baseline equals omega 0 StartRoot 1 minus zeta squared EndRoot equals omega 0 gamma (1.15)

       StartLayout 1st Row ModifyingAbove u With caret Subscript 0 Baseline equals StartFraction StartRoot u 0 squared omega Subscript d Superscript 2 Baseline plus left-parenthesis v Subscript x Baseline 0 Baseline plus zeta omega 0 u 0 right-parenthesis squared EndRoot Over omega Subscript d Baseline EndFraction EndLayout (1.16)

       StartLayout 1st Row phi 0 equals minus arc tangent left-parenthesis StartFraction v Subscript x Baseline 0 Baseline plus zeta omega 0 u 0 Over u 0 omega Subscript d Baseline EndFraction right-parenthesis EndLayout (1.17)

      Figure 1.3 Damped, sinusoidal motion of the underdamped oscillator. Source: Alexander Peiffer.

      1.1.4 The Critically Damped Oscillator (ζ = 1)

      The last case is a transition between both systems. There is only one root s=−ω0, and the solution in Equation (1.4) becomes:

       u left-parenthesis t right-parenthesis equals left-parenthesis upper B 1 plus upper B 2 right-parenthesis e Superscript minus omega 0 t (1.18)

      This solution does not provide enough constants to fulfil the initial conditions, so that we need an extra term te−ω0t:

       u left-parenthesis t right-parenthesis equals left-parenthesis upper B 3 plus upper B 4 t right-parenthesis e Superscript minus omega 0 t (1.19)

      Introducing the initial conditions again, the constants are:

       StartLayout 1st Row upper B 3 equals u 0 EndLayout (1.20)

       StartLayout 1st Row upper B 4 equals v Subscript x Baseline 0 Baseline plus omega 0 u 0 EndLayout (1.21)

Скачать книгу