Скачать книгу

Schematic illustration of a vertical cross-section of a 3-D model.

      Now, let us consider the “generalized Green’s identity” of Lanczos [27], which is an integral over volume τ

      (2.8)images

      If the adjoint problem D and its boundary conditions are chosen properly, then F(u*,V) will vanish and the Green’s identity will reduce to the bilinear identity

      (2.9)images

      The adjoint system is

      Here, ~ denotes Hermitian and * denotes complex conjugate. If

      (2.11)images

      then we can write

      (2.12)images

      In order to get expressions for VT (Du)*, we need to write complete differentials

      (2.13)images

      (2.14)images

      (2.15)images

      Similar expressions for VT(DTu*) can be written for the y and z variables. Thus, the expression for VT(DTu*) will be

      (2.16)images

      (2.17)images

      (2.18)images

      (2.19)images

      then the adjoint system of equation DTu* = γ* will be written as

      (2.20)images

      and

      (2.21)images

      The above analysis will also yield the expression for F(u*,V), which is

      (2.22)images

      Rewriting the boundary terms

      (2.23)images

      Substituting u1, u2, u3, and u4 values yields

      (2.24)images

      (2.25)images

      Changing to the surface integral, it becomes

      (2.26)images

      (2.27)images

      Substituting equation (2.7) and (u)* = γ* in the above expression, one obtains

      (2.28)images

      This expression can be rewritten using expressions for δVT, γ*, δD, V, and u*

      (2.29)images

      or

      (2.30)images

      Considering a unit point source Is = δ(x - x0) δ(y - y0) δ(z) at the observation point, the above equation becomes