ТОП просматриваемых книг сайта:
Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов
Читать онлайн.Название Genomic and Epigenomic Biomarkers of Toxicology and Disease
Год выпуска 0
isbn 9781119807698
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
38 Fabbri, M. (2018). MicroRNAs and miRceptors: A new mechanism of action for intercellular communication. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (1737): 20160486.
39 Fabian, M.R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat. Struct. Mol. Biol. 19: 586–593.
40 Faraldi, M., Gomarasca, M., Sansoni, V., Perego, S., Banfi, G., and Lombardi, G. (2019). Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 9: 1584.
41 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.
42 Feng, Y.H. and Tsao, C.J. (2016). Emerging role of microRNA-21 in cancer. Biomed. Rep. 5: 395–402.
43 Ferrari, E. and Gandellini, P. (2020). Unveiling the ups and downs of miR-205 in physiology and cancer: Transcriptional and post-transcriptional mechanisms. Cell Death Dis. 11: 980.
44 Fowler, B.A., Alexander, J., and Oskarsson, A. (2015). Toxic metals in food. Ch. 6 in Handbook on the Toxicology of Metals, 4th edn., G.F. Nordberg, B.A. Fowler, and M. Nordberg eds., San Diego: Academic Press.
45 Friberg, L. (1983). Cadmium. Annu. Rev. Public Health 4: 367–373.
46 Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92–105.
47 Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A., and Catalano, A. (2020). The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 17 (11): 3782.
48 Gil, F. and Pla, A. (2001). Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 21: 245–255.
49 Gonzalez, H., Lema, C., Kirken, R.A., Maldonado, R.A., Varela-Ramirez, A., and Aguilera, R.J. (2015). Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile: Potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin. Cancer Drugs 2: 138–147.
50 Goyal, T., Mitra, P., Singh, P., Ghosh, R., Sharma, S., and Sharma, P. (2021). Association of microRNA expression with changes in immune markers in workers with cadmium exposure. Chemosphere 274: 129615.
51 Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509–524.
52 Hackenmueller, S.A., Gherasim, C., Walden, J.Q., Law, C.L., and Strathmann, F.G. (2019). Unrecognized elevations of toxic elements in urine and blood highlight the potential need for a broader approach to exposure assessment. J. Anal Toxicol. 43: 284–290.
53 Hammond, S.M. (2015). An overview of microRNAs. Adv. Drug Deliv. Rev. 87: 3–14.
54 Heneghan, H.M., Miller, N., and Kerin, M.J. (2010). MiRNAs as biomarkers and therapeutic targets in cancer. Curr. Opin. Pharmacol. 10: 543–550.
55 Holmes, P., James, K.A., and Levy, L.S. (2009). Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 408: 171–182.
56 Hughes, M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 133: 1–16.
57 Hunt, K.M., Srivastava, R.K., Elmets, C.A., and Athar, M. (2014). The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett. 354: 211–219.
58 IARC. (1980). Some metals and metallic compounds. IARC Monogr. Eval. Carcinog Risk Chem Hum 23: 1–415.
59 IARC. (1990). Chromium, Nickel and Welding. Lyon: WHO.
60 IARC. (2012). Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100: 11–465.
61 Iorio, M.V. and Croce, C.M. (2012). MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO. Mol. Med. 4: 143–159.
62 Jarup, L. (2003). Hazards of heavy metal contamination. Br. Med. Bull. 68: 167–182.
63 Jarup, L. and Akesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 238: 201–208.
64 Jia, J., Li, T., Yao, C., Chen, J., Feng, L., Jiang, Z., Shi, L., Liu, J., Chen, J., and Lou, J. (2020). Circulating differential miRNAs profiling and expression in hexavalent chromium exposed electroplating workers. Chemosphere 260: 127546.
65 Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., and Korrick, S. (2012). Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 120: 799–806.
66 Karvinen, S., Sievanen, T., Karppinen, J.E., Hautasaari, P., Bart, G., Samoylenko, A., Vainio, S.J., Ahtiainen, J.P., Laakkonen, E.K., and Kujala, U.M. (2020). MicroRNAs in extracellular vesicles in sweat change in response to endurance exercise. Front Physiol. 11: 676.
67 Klaassen, C.D. (2013). Toxicology the Basic Science of Poisons. New York: Mc Graw Hill.
68 Kobayashi, E., Suwazono, Y., Uetani, M., Kido, T., Nishijo, M., Nakagawa, H., and Nogawa, K. (2006). Tolerable level of lifetime cadmium intake estimated as a benchmark dose low, based on excretion of beta2-microglobulin in the cadmium-polluted regions of the Kakehashi River Basin, Japan. Bull Environ. Contam. Toxicol. 76: 8–15.
69 Kong, A.P., Xiao, K., Choi, K.C., Wang, G., Chan, M.H., Ho, C.S., Chan, I., Wong, C.K., Chan, J.C., and Szeto, C.C. (2012). Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta 413: 1053–1057.
70 Kotorashvili, A., Ramnauth, A., Liu, C., Lin, J., Ye, K., Kim, R., Hazan, R., Rohan, T., Fineberg, S., and Loudig, O. (2012). Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7: e34683.
71 Krol, J., Loedige, I., and Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11: 597–610.
72 Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., Pezzella, F., Boultwood, J., Wainscoat, J.S., Hatton, C.S., and Harris, A.L. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141: 672–675.
73 Lei, L.J., Zhang, Z., Guo, J.Y., Shi, X.J., Zhang, G.Y., Kang, H., Gao, Y.Y., Hu, X.Q., Wang, T., and Mu, L.N. (2019). MiR-21 as a potential biomarker for renal dysfunction induced by cadmium exposure. Int. J. Clin. Exp. Med. 12: 1631–1639.
74 Li, X., Shi, Y., Wei, Y., Ma, X., Li, Y., and Li, R. (2012). Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ. Toxicol. Pharmacol. 34: 381–387.
75 Li, Y., Li, P., Yu, S., Zhang, J., Wang, T., and Jia, G. (2014). miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol. Lett. 229: 319–326.
76 Li, Y., Ye, F., Wang, A., Wang, D., Yang, B., Zheng, Q., Sun, G., and Gao, X. (2016). Chronic arsenic poisoning probably caused by arsenic-based pesticides: Findings from an investigation study of a household. Int. J. Environ. Res. Public Health 13 (1): 133.
77 Libri, V., Miesen, P., Rij, V.A.N.R.P, and Buck, A.H. (2013). Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci. 70: 3525–3544.
78 Liu, J.Q., Niu, Q., Hu, Y.H., Li, Y., Wang, H.X., Xu, S.Z., Ding, Y.S., Li, S.G., and Ma, R.L. (2018). The bidirectional effects of arsenic on miRNA-21: A systematic review and meta-analysis. Biomed. Environ. Sci. 31: 654–666.
79 Manning, F.C., Blankenship, L.J., Wise, J.P., Xu, J., Bridgewater, L.C., and Patierno, S.R. (1994). Induction of internucleosomal DNA fragmentation by carcinogenic chromate: Relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. Environ. Health Perspect. 102 (Suppl 3): 159–167.
80 Mariner, P.D., Korst, A., Karimpour-Fard,