ТОП просматриваемых книг сайта:
Biomolecules from Natural Sources. Группа авторов
Читать онлайн.Название Biomolecules from Natural Sources
Год выпуска 0
isbn 9781119769613
Автор произведения Группа авторов
Издательство John Wiley & Sons Limited
230 230 Kauffman, G.B. and Seymour, R.B. (1990). Elastomers: i. Natural rubber. Journal of Chemical Education 67 (5): 422.
231 231 Hocking, P.J. and Marchessault, R.H. (1994). Biopolyesters. In: Chemistry and Technology of Biodegradable Polymers (ed. G. Griffin), 48–96. Springer Netherlands.
232 232 Holmes, P.A. (1985). Applications of PHB – a microbially produced biodegradable thermoplastic. Physics in Technology 16 (1): 32–36.
233 233 Addison, C.J., Chu, S.H., and Reusch, R.N. (2004). Polyhydroxybutyrate-enhanced transformation of log-phase Escherichia coli. Biotechniques 37 (3): 376–378, 380, 382.
234 234 Knowles, J.C. (1993). Development of a natural degradable polymer for orthopaedic use. Journal of Medical Engineering and Technology 17 (4): 129–137.
235 235 Kunze, C., Freier, T., Kramer, S., and Schmitz, K.P. (2002). Anti-inflammatory prodrugs as plasticizers for biodegradable implant materials based on poly(3-hydroxybutyrate). Journal of Materials Science: Materials in Medicine 13 (11): 1051–1055.
236 236 Cheng, S., Chen, G.Q., Leski, M., Zou, B., Wang, Y., and Wu, Q. (2006). The effect of D,L-betahydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 27 (20): 3758–3765.
237 237 Misra, S.K., Valappil, S.P., Roy, I., and Boccaccini, A.R. (2006). Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7 (8): 2249–2258.
238 238 Valappil, S.P., Misra, S.K., Boccaccini, A.R., and Roy, I. (2006). Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Review of Medical Devices 3 (6): 853–868.
239 239 van der Walle, G.A., de Koning, G.J., Weusthuis, R.A., and Eggink, G. (2001). Properties, modifications and applications of biopolyesters. Advances in Biochemical Engineering/Biotechnology 71: 263–291.
240 240 Wang, Y.W., Yang, F., Wu, Q., Cheng, Y.C., Yu, P.H., Chen, J., and Chen, G.Q. (2005). Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26 (7): 755–761.
241 241 Nebe, B., Forster, C., Pommerenke, H., Fulda, G., Behrend, D., Bernewski, U., Schmitz, K.P., and Rychly, J. (2001). Structural alterations of adhesion mediating components in cells cultured on poly β-hydroxy butyric acid. Biomaterials 22: 2425–2434.
242 242 Shishatskaya, I. and Volova, T.G. (2004). A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. Journal of Materials Science: Materials in Medicine 15 (8): 915–923.
243 243 Shishatskaya, I., Volova, T.G., Puzyr, A.P., Mogilnaya, O.A., and Efremov, S.N. (2004). Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. Journal of Materials Science: Materials in Medicine 15 (6): 719–728.
244 244 Shishatskaya, I., Volova, T.G., Gordeev, S.A., and Puzyr, A.P. (2005). Degradation of P(3HB) and P(3HB-co-3HV) in biological media. Journal of Biomaterials Science. Polymer Edition 16 (5): 643–657.
245 245 Shishatskaya, I., Khlusov, I.A., and Volova, T.G. (2006). A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. Journal of Biomaterials Science. Polymer Edition 17 (5): 481–498.
246 246 Shishatskaya, I., Voinova, O.N., Goreva, A.V., Mogilnaya, O.A., and Volova, T.G. (2008). Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine 19 (6): 2493–2502.
247 247 Tezcaner, A., Bugra, K., and Hasirci, V. (2003). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 24: 4573–4583.
248 248 Malm, T., Bowald, S., Karacagil, S., Bylock, A., and Busch, C. (1992). A new biodegradable patch for closure of atrial septal defect. Scandinavian Journal of Thoracic and Cardiovascular Surgery 26 (1): 9–14.
249 249 Malm, T., Bowald, S., Bylock, A., Saldeen, T., and Busch, C. (1992). Regeneration of pericardial tissue on absorbable polymer patches implanted into the pericardial sac. An immunohistochemical, ultrastructural and biochemical study in the sheep. Scandinavian Journal of Thoracic and Cardiovascular Surgery 26 (1): 15–21.
250 250 Malm, T., Bowald, S., Bylock, A., Busch, C., and Saldeen, T. (1994). Enlargement of the right ventricular outflow tract and the pulmonary artery with a new biodegradable patch in transannular position. European Surgical Research 26 (5): 298–308.
251 251 Cai, Z., Wang, L., Hou, X., and Cheng, G. (2002). Application of biodegradable polyhydroxybutyrate in medicine and tissue engineering. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19 (2): 306–309.
252 252 Kassab, A.C., Xu, K., Denkbas, E.B., Dou, Y., Zhao, S., and Piskin, E. (1997). Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. Journal of Biomaterials Science. Polymer Edition 8 (12): 947–961.
253 253 Chen, G.Q. and Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26 (33): 6565–6578.
254 254 Amara, A.A., Steinbuchel, A., and Rehm, B.H.A. (2002). In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Applied Microbiology and Biotechnology 59: 477–482.
255 255 Amara, A.A. and Rehm, B.H. (2003). Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Biochemical Journal 374 (Pt 2): 413–421.
256 256 Taguchi, S., Maehara, A., Takase, K., Nakahara, M., Nakamura, H., and Doi, Y. (2001). Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiology Letters 198 (1): 65–71.
257 257 Taguchi, S., Nakamura, H., Hiraishi, T., Yamato, I., and Doi, Y. (2002). In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. Journal of Biochemistry 131 (6): 801–806.
258 258 van Beilen, J.B. and Poirier, Y. (2007). Guayule and Russian Dandelion as alternative sources of natural rubber. Critical Reviews in Biotechnology 27 (4): 217–231.
259 259 van Beilen, J.B. and Poirier, Y. (2007). Prospects for biopolymer production in plants. In: Green Gene Technology (ed. A. Ficheter and C. Sautter), 133–151. Berlin Heidelberg: Springer.
260 260 Clark, J.E., Beegen, H., and Wood, H.G. (1986). Isolation of intact chains of polyphosphate from “Propionibacterium shermanii” grown on glucose or lactate. Journal of Bacteriology 168 (3): 1212–1219.
261 261 Van den Broek, P.J.A., De Bruijne, A.W., and Van Steveninck, J. (1987). The role of ATP in the control of H+-galactoside symport in the yeast Kluyveromyces marxianus. Biochemical Journal 242 (3): 729–734.
262 262 Tsiomenko, A.B., Lupashin, V.V., and Kulaev, I.S. (1987). Export of enzymes into culture medium by yeasts of saccharomyces genus. In: Extracellular Enzymes of Microorganisms (ed. J. Chaloupka), 205–208. US: Springer.
263 263 Babes, V. (1895). Beobachtungen über die metachromatischen Körperchen, Sporenbildung, Verzweigung, Kolben-und Kapselbildung pathogener Bakterien. Zeitschrift fur Hygiene und Infectionskrankheiten 20 (1): 412–437.
264 264 Schomburg, D. and Stephan, D.R. (1997). Dolichyl-diphosphate-polyphosphate phosphotransferase. In: Enzyme Handbook (ed. D. Schomburg and D.R. Stephan), 417–419. Berlin Heidelberg: Springer.
265 265 Segawa, S., Fujiya, M., Konishi, H., Ueno, N., Kobayashi, N., Shigyo, T., and Kohgo, Y. (2011). Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS ONE 6 (8): e23278.
266 266 Dedkova, E.N. and Blatter, L.A. (2014). Role of beta-hydroxybutyrate, its polymer poly-beta- hydroxybutyrate and inorganic polyphosphate in mammalian health and