Скачать книгу

on top rho J subscript 1 superscript 2 left parenthesis x subscript 01 rho over r subscript text d end text end subscript right parenthesis d rho end cell row cell P subscript text loss end text end subscript superscript text sample end text end superscript equals left parenthesis H subscript 0 superscript text disk end text end superscript right parenthesis squared tau squared P subscript text loss end text comma text norm end text end subscript superscript text sample end text end superscript space end cell row cell text with end text space space P subscript text loss end text comma text norm end text end subscript superscript text sample end text end superscript equals space 2 pi left parenthesis fraction numerator omega mu subscript 0 over denominator 2 k subscript rho end fraction right parenthesis squared sigma subscript text sample end text end subscript left parenthesis 1 plus fraction numerator sin k subscript y L over denominator k subscript y L end fraction right parenthesis L blank with 0 below and r subscript text h end text end subscript on top rho J subscript 1 superscript 2 left parenthesis x subscript 01 rho over r subscript text d end text end subscript right parenthesis d rho space end cell end table"/> (2.8)

      2.3.3 SNR Estimation

      The SNR is proportional to the transmit efficiency as follows [24]:

      with H0 the magnetic field amplitude induced in the sample by the probe and Ploss the total power losses. For ceramic probes working with the TE01δ mode, the latter includes the ceramic resonator and the sample contributions. Assuming the magnetic field amplitude equal to that of a disk resonator in its center, weighted by the penalty coefficient τ, Equation 2.9 becomes:

text SNR end text subscript text ceramic end text end subscript superscript text TE end text subscript 01 text δd end text end subscript end superscript ∝? fraction numerator τ tau H subscript 0 superscript text disk end text end superscript over denominator square root of P subscript text loss end text end subscript superscript text ring end text end superscript plus P subscript text loss end text end subscript superscript text sample end text end superscript end root end fraction.

      The above equation can be simplified to:

       text SNR end text subscript text ceramic end text end subscript superscript text TE end text subscript 01 text δd end text end subscript end superscript ∝? fraction numerator τ tau over denominator square root of P subscript text loss end text comma text norm end text end subscript superscript text ring end text end superscript plus τ tau squared P subscript text loss end text comma text norm end text end subscript superscript text sample end text end superscript end root end fraction. (2.10)

      2.3.4 Mode Frequency

      To be used as a coil for MR imaging, the exploited mode of the resonator must be adjusted to the working frequency. In this framework estimating the mode frequency with a simple method is very useful for predesigning the ceramic probe. Methods with low computational costs provide an approximated value of the TE01δ mode frequency for disk resonators. For example, a commonly used expression, derived from simulation data, is the following:

      fraction numerator f subscript text probe end text end subscript minus f subscript text disk end text end subscript over denominator f subscript text disk end text end subscript end fraction almost equal to fraction numerator negative begin display style triple integral subscript V subscript text samp end text end subscript end subscript left parenthesis ? subscript straight s minus ? subscript straight d right parenthesis vertical line E subscript text disk end text end subscript vertical line squared d v end style text end text over denominator begin display style integral integral integral subscript V subscript text samp end text end subscript union to the power of text ? end text end exponent text end text V subscript text ring end text end subscript end subscript left parenthesis ? subscript straight d vertical line E subscript text disk end text end subscript vertical line squared plus mu subscript 0 vertical line H subscript text disk end text end subscript vertical line squared right parenthesis d v text end text end style end fraction. (2.12)

      Figure 2.4 Quantification of the TE01δ mode frequency shift between the disk resonator and the dielectric probe (for both, the numerical simulations results were obtained with the CST Eigenmode Solver). The probe ring has its relative permittivity equal to 200, 500, and 800. The frequency variation is plotted as a function of the sample permittivity and for several discrete values of the radii ratio. Curves in dashed lines correspond to systematic frequency shift inferior to 5%. From [21].

      2.3.4 Application: Design Guidelines

Скачать книгу