Скачать книгу

C. (2012). Generative‐discriminative basis learning for medical imaging. IEEE Trans. Med. Imaging 31: 51–69.

      36 36 Baraniuk, R.G., Cevher, V., and Wakin, M.B. (2012). Low‐dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98: 959–971.

      37 37 Gray, R.M. (1984). Vector quantization IEEE acoustics. Speech Signal Process. Mag. 1: 4–29.

      38 38 Gersho, A. and Gray, R.M. (1992). Vector quantization and signal compression. Kluwer Academic Publishers.

      39 39 Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos. Mag. 2: 559–572.

      40 40 Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis. Chemom. Intel. Lab. Syst. 2: 37–35.

      41 41 Dunteman, G.H. (1989). Principal Component Analysis. Sage Publications.

      42 42 Jollife, I. T. Principal Component Analysis Wiley, 2002

      43 43 Hÿvarinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley.

      44 44 He, R., Hu, B.‐G., Zheng, W.‐S., and Kong, X.‐W. (2011). Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20: 1485–1494.

      45 45 Li, X.L., Adali, T., and Anderson, M. (2011). Noncircular principal component analysis and its application to model selection. IEEE Trans. Signal Process. 59: 4516–4528.

      46 46 Sorzano, C.O.S., Vargas, J., and Pascual‐Montano, A. A survey of dimensionality reduction techniques. https://arxiv.org/ftp/arxiv/papers/1403/1403.2877.pdf

      47 47 Jenssen, R. (2010). Kernel entropy component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32: 847–860.

      48 48 https://medium.com/machine‐learning‐101/chapter‐2‐svm‐support‐vector‐machine‐theory‐f0812effc72

      49 49 https://cgl.ethz.ch/teaching/former/vc_master_06/Downloads/viscomp‐svm‐clustering_6.pdf

      50 50 https://people.duke.edu/~rnau/regintro.htm

      51 51 https://discuss.analyticsvidhya.com/t/what‐does‐min‐samples‐split‐means‐in‐decision‐tree/6233

      52 52 https://medium.com/@mohtedibf/indepth‐parameter‐tuning‐for‐decision‐tree‐6753118a03c3

      53 53 https://gist.github.com/PulkitS01/97c9920b1c913ba5e7e101d0e9030b0e

      3.1 Multi‐layer Feedforward Neural Networks

      3.1.1 Single Neurons

      For electrical engineers, the most popular applications of single neurons are in adaptive finite impulse response (FIR) filters. Here, s left-parenthesis k right-parenthesis equals sigma-summation Underscript i Overscript upper N Endscripts w Subscript i Baseline x left-parenthesis k minus i right-parenthesis, where k represents a discrete time index. Usually, a linear activation function is used. In electrical engineering, adaptive filters are used in signal processing with practical applications like adaptive equalization, and active noise cancelation.

      Source: CS231n Convolutional Neural Networks for Visual Recognition [1].

Schematic illustration of block diagram of feedforward network.